cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036016 Number of partitions of n into parts not of form 4k+2, 8k, 8k+3 or 8k-3.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 6, 8, 9, 10, 12, 15, 17, 19, 22, 26, 30, 33, 38, 45, 51, 56, 64, 74, 83, 92, 104, 119, 133, 147, 165, 187, 208, 229, 256, 288, 319, 351, 390, 435, 481, 528, 584, 649, 715, 783, 863, 954, 1047, 1145, 1258, 1385, 1517, 1655, 1812, 1989
Offset: 0

Views

Author

Keywords

Comments

Case k=2,i=2 of Gordon/Goellnitz/Andrews Theorem.
Also number of partitions in which no odd part is repeated, with at most one part of size less than or equal to 2 and where differences between adjacent parts are greater than 1 when the larger part is odd and greater than 2 when the larger part is even.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + 5*x^10 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.

Crossrefs

Programs

  • Maple
    M:=100; qf:=(a,q)->mul(1-a*q^j,j=0..M); tS:=1/(qf(q,q^8)*qf(q^4,q^8)*qf(q^7,q^8)); series(%,q,M); seriestolist(%);
  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/((1-x^(8*k-1))*(1-x^(8*k-4))*(1-x^(8*k-7))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - ([1, 0, 0, 1, 0, 0, 1, 0][(k-1)%8 + 1]) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jun 28 2004 */

Formula

Expansion of f(-x^3, -x^5) / psi(-x) = psi(x^4) / f(-x, -x^7) in powers of x where phi(), f(,) are Ramanujan theta functions.
Euler transform of period 8 sequence [ 1, 0, 0, 1, 0, 0, 1, 0, ...]. - Michael Somos, Jun 28 2004
Let qf(a, q) = Product(1-a*q^j, j=0..infinity); g.f. is 1/(qf(q, q^8)*qf(q^4, q^8)*qf(q^7, q^8)).
G.f.: Sum_{k>=0} x^(k^2) Product_{i=1..k} (1 + x^(2*i - 1)) / (1 - x^(2*i)). - Michael Somos, Jul 24 2012
a(n) ~ sqrt(2+sqrt(2)) * exp(sqrt(n)*Pi/2) / (8*n^(3/4)). - Vaclav Kotesovec, Oct 04 2015