cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036018 Number of partitions of n into parts not of form 4k+2, 12k, 12k+3 or 12k-3.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 6, 7, 8, 10, 13, 16, 18, 22, 28, 33, 38, 45, 55, 65, 74, 87, 104, 121, 138, 160, 188, 217, 247, 284, 330, 378, 428, 489, 562, 640, 722, 820, 936, 1059, 1191, 1345, 1524, 1717, 1924, 2163, 2438, 2734, 3054, 3419, 3834, 4284, 4770, 5321, 5943
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Case k=3,i=2 of Gordon/Goellnitz/Andrews Theorem.
Also number of partitions in which no odd part is repeated, with at most 1 part of size less than or equal to 2 and where differences between parts at distance 2 are greater than 1 when the larger part is odd and greater than 2 when the larger part is even.

Examples

			1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
q + q^5 + q^9 + q^13 + 2*q^17 + 3*q^21 + 3*q^25 + 4*q^29 + 6*q^33 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.

Crossrefs

Cf. A101195.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(6*k - 5))*(1 + x^(6*k - 1))/((1 - x^(6*k - 4))*(1 - x^(6*k - 2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - ([1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0][(k-1)%12 + 1]) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jun 28 2004 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x*O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 28 2004 */

Formula

Expansion of q^(-1/4) * (eta(q^2) * eta(q^3) * eta(q^12)) / (eta(q) * eta(q^4) * eta(q^6)) in powers of q. - Michael Somos, Jun 28 2004
Euler transform of period 12 sequence [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, ...]. - Michael Somos, Jun 28 2004
Expansion of psi(-x^3) / psi(-x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Nov 21 2007
Given g.f. A(x), then B(x) = x * A(x^4) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = u^3 * (1 + v^4) - v * (1 + u*v)^3. - Michael Somos, Nov 21 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = sqrt(1 / 3) / f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 21 2007
A101195(n) = (-1)^n * a(n).
From Vaclav Kotesovec, Jan 12 2017: (Start)
a(n) ~ Pi * BesselI(1, sqrt(4*n+1)*Pi/(2*sqrt(3))) / (3*sqrt(4*n+1)).
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(3/4) * n^(3/4)) * (1 + (Pi/24 - 3/(8*Pi))*sqrt(3/n) + (Pi^2/384 - 45/(128*Pi^2) - 15/64)/n).
(End)