A036066 The summarize Lucas sequence: summarize the previous two terms, start with 1, 3.
1, 3, 1311, 2331, 331241, 14432231, 34433241, 54533231, 2544632221, 163534435221, 263544436231, 363554634231, 463554733221, 17364544733221, 37263554634231, 37363554734231, 37364544933221, 1937263554933221, 3927263544835231, 391827264534836231, 293827363544836231
Offset: 0
Links
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 2*n+1, (p-> parse(cat(seq((c-> `if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))( add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1),a(n-2)])))) end: seq(a(n), n=0..20); # Alois P. Heinz, Jun 18 2022
-
Mathematica
a[0] = 1; a[1] = 3; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0 &]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2017 *)
-
PARI
{a=[1,3]; for(n=1,50,a=concat(a,A244112(eval(Str(a[n],a[n+1]))))); a} \\ M. F. Hasler, Feb 25 2018
Formula
a(n+1) = A244112(concat(a(n),a(n-1))). - M. F. Hasler, Feb 25 2018
Comments