cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036229 Smallest n-digit prime containing only digits 1 or 2 or -1 if no such prime exists.

Original entry on oeis.org

2, 11, 211, 2111, 12211, 111121, 1111211, 11221211, 111112121, 1111111121, 11111121121, 111111211111, 1111111121221, 11111111112221, 111111112111121, 1111111112122111, 11111111111112121, 111111111111112111, 1111111111111111111, 11111111111111212121
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that such a prime always exists.
a(2), a(19), a(23), etc. are the prime repunits (A004023). a(1000) = (10^n-1)/9 + 111011000010.

Crossrefs

Programs

  • Mathematica
    Do[p = (10^n - 1)/9; k = 0; While[ ! PrimeQ[p], k++; p = FromDigits[ PadLeft[ IntegerDigits[ k, 2], n] + 1]]; Print[p], {n, 1, 20}]
    Table[Min[Select[ FromDigits/@Tuples[{1,2},n],PrimeQ]],{n,20}] (* Harvey P. Dale, Feb 05 2014 *)
  • Python
    from sympy import isprime
    def A036229(n):
        k, r, m = (10**n-1)//9, 2**n-1, 0
        while m <= r:
            t = k+int(bin(m)[2:])
            if isprime(t):
                return t
            m += 1
        return -1 # Chai Wah Wu, Aug 18 2021

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, May 03 2002
Escape clause added by Chai Wah Wu, Aug 18 2021