A036250 Number of trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
1, 1, 2, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060, 4333718587353, 15255879756033
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1717
- Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
- Gus Wiseman, Non-isomorphic representatives of the a(1) = 2 through a(5) = 35 connected multigraphs with loops with multiset density -1.
- Index entries for sequences related to trees
Crossrefs
Programs
-
Mathematica
max = 30; B[] = 1; Do[B[x] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = B[x] - B[x]^2/2 + B[x^2]/2; CoefficientList[1 + A[x] + O[x]^max, x] (* Jean-François Alcover, Jan 28 2019 *)
Formula
G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A036249.
Comments