cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A191646 Triangle read by rows: T(n,k) = number of connected multigraphs with n >= 0 edges and 1 <= k <= n+1 vertices, with no loops allowed.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 11, 11, 6, 0, 1, 6, 22, 34, 29, 11, 0, 1, 7, 37, 85, 110, 70, 23, 0, 1, 9, 61, 193, 348, 339, 185, 47, 0, 1, 11, 95, 396, 969, 1318, 1067, 479, 106, 0, 1, 13, 141, 771, 2445, 4457, 4940, 3294, 1279, 235
Offset: 0

Views

Author

Alberto Tacchella, Jul 04 2011

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,  3;
  0, 1, 4, 11, 11,  6;
  0, 1, 6, 22, 34, 29, 11;
  ...
		

Crossrefs

Row sums give A076864. Diagonal is A000055.
Cf. A034253, A054923, A192517, A253186 (column k=3), A290778 (column k=4).

Programs

  • PARI
    EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t-1)\2)*x^t + if(t%2,0,x^(t/2)))}
    G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
    R(n)={Mat(apply(p->Col(p+O(y^n),-n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
    { my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018

Formula

T(n,k=3) = A253186(n) = A034253(n,k=2) for n >= 1. - Petros Hadjicostas, Oct 02 2019

A038052 Number of labeled trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

1, 1, 2, 7, 42, 376, 4513, 68090, 1238968, 26416729, 646140364, 17837852044, 548713088399, 18612963873492, 690271321314292, 27785827303491579, 1206582732097720126, 56224025231569020724, 2798445211000659147033, 148178324442139816854902, 8317074395027724691495980
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
          m^max(0, m-2), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 16 2022
  • Mathematica
    a[0] = 1; a[n_] := Sum[StirlingS2[n, k]*k^(k - 2), {k, 1, n}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 09 2013, after Vladeta Jovovic *)

Formula

E.g.f.: B(e^x-1) where B is e.g.f. of A000272.
a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-2). - Vladeta Jovovic, Sep 20 2003
a(n) ~ (1+exp(1))^(3/2) * n^(n-2) / (exp(n) * (log(1+exp(-1)))^(n-3/2)). - Vaclav Kotesovec, Feb 17 2017

A303841 Triangle read by rows: T(s,n) (s>=1 and 1<=n<=s) = number of weighted trees with n nodes and positive integer node labels with label sum s.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 4, 4, 3, 1, 3, 6, 10, 9, 6, 1, 3, 9, 17, 24, 20, 11, 1, 4, 12, 30, 50, 63, 48, 23, 1, 4, 16, 44, 96, 146, 164, 115, 47, 1, 5, 20, 67, 164, 315, 437, 444, 286, 106, 1, 5, 25, 91, 267, 592, 1022, 1300, 1204, 719, 235, 1, 6, 30, 126, 408, 1059, 2126, 3331, 3899, 3328, 1842, 551
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Examples

			The triangle starts
1;
1 1;
1 1  1;
1 2  2   2;
1 2  4   4    3;
1 3  6  10    9   6;
1 3  9  17   24   20    11;
1 4 12  30   50   63    48    23;
1 4 16  44   96  146   164   115    47;
1 5 20  67  164  315   437   444   286  106;
1 5 25  91  267  592  1022  1300  1204  719     235;
1 6 30 126  408 1059  2126  3331  3899 3328    1842    551;
1 6 36 163  603 1754  4098  7511 10781 11692   9233   4766  1301;
1 7 42 213  856 2805  7368 15619 26294 34844  35136  25865 12486  3159;
1 7 49 265 1186 4270 12590 30111 58485 91037 112036 105592 72734 32973 7741;
		

Crossrefs

Cf. A036250 (row sums), A002620 (column 3), A301739 (column 4), A301740 (column 5), A000055 (diagonal), A000081 (subdiagonal), A303911 (rooted).

Programs

  • PARI
    \\ here b is A303911
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerMT(y*v))); v}
    seq(n)={my(g=x*Ser(y*b(n))); Vec(g - g^2/2 + substvec(g,[x,y],[x^2,y^2])/2)}
    {my(A=seq(15)); for(n=1, #A, print(Vecrev(A[n]/y)))} \\ Andrew Howroyd, May 19 2018

A317722 Number of connected graphs with n nodes and no node a member of more than one cycle.

Original entry on oeis.org

1, 1, 2, 3, 8, 18, 56, 165, 563, 1937, 7086, 26396, 101383, 395821, 1573317, 6335511, 25825861, 106344587, 441919711, 1851114466, 7809848543, 33162241547, 141636863809, 608144007472, 2623832050460, 11370768445682, 49478287669666, 216109924932762, 947216963083175
Offset: 0

Views

Author

R. J. Mathar, Aug 05 2018

Keywords

Comments

The sequence counts connected, loopless, undirected graphs with cycles that do not overlap (cycles have length >= 2), which means any pair of cycles does not have common edges or nodes.
Examples of these graphs are the trees (A000055), the unicyclic graphs (A001429, A002094), or the graphs with cycles without chords.
The concept is both narrower and wider than the concept for Husimi trees, because cycles in Husimi trees may share nodes (but not edges), and because cycles in Husimi trees need to have length >= 3.
There is a mapping/contraction of these graphs to trees: replace each cycle by a single node, attaching all edges that enter a node in the cycle to that node. That tree associated with the graph could be called the skeleton tree.
By reversing that surjection of the graphs to trees, we may generate our graphs with non-overlapping cycles by generating the set of weighted trees (A303841) and replacing the nodes by cycles of lengths that equals their weight.

Crossrefs

Cf. A036250, A381468 (without 2-cycles).

Programs

  • PARI
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])}
    R(n,y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p + p*y*(p/(1 - p) + (p + p2)/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + p + (raise(g,2) - g^2 + y*(r + c - 2*p))/2 }
    { Vec(G(30)) } \\ Andrew Howroyd, Feb 25 2025

Formula

a(n) >= A036250(n).

Extensions

a(5) corrected. - R. J. Mathar, Aug 12 2018

A036251 Number of trees with 2-colored leaves.

Original entry on oeis.org

1, 2, 3, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Essentially the same as A036250. Cf. A038054.

Programs

  • Mathematica
    max = 30; B[] = 1; Do[B[x] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = 1 + x + x^2 + B[x] - B[x]^2/2 + B[x^2]/2; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, Jan 28 2019 *)

Formula

G.f.: B(x) + B(x)^2/2 + B(x^2)/2 - B(x)*(B(x)-x), where B(x) is g.f. for A029856.
Showing 1-5 of 5 results.