cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303911 Triangle T(w>=1,1<=n<=w) read by rows: the number of rooted weighted trees with n nodes and weight w.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 10, 13, 9, 1, 5, 16, 31, 35, 20, 1, 6, 24, 60, 98, 95, 48, 1, 7, 33, 103, 217, 304, 262, 115, 1, 8, 44, 162, 423, 764, 945, 727, 286, 1, 9, 56, 241, 743, 1658, 2643, 2916, 2033, 719, 1, 10, 70, 341, 1221, 3224, 6319, 8996, 8984, 5714, 1842, 1, 11, 85, 466, 1893
Offset: 1

Views

Author

R. J. Mathar, May 02 2018

Keywords

Comments

Weights are positive integer labels on the nodes. The weight of the tree is the sum of the weights of its nodes.

Examples

			The triangle starts
1 ;
1  1 ;
1  2  2 ;
1  3  5   4 ;
1  4 10  13    9 ;
1  5 16  31   35    20 ;
1  6 24  60   98    95    48 ;
1  7 33 103  217   304   262   115 ;
The first column (for a single node n=1) is 1, because all the weight is on that node.
		

Crossrefs

Cf. A000081 (diagonal), A000107 (subdiagonal), A036249 (row sums), A303841 (not rooted).

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerMT(y*v))); v}
    {my(A=seq(10)); for(n=1, #A, print(Vecrev(A[n])))} \\ Andrew Howroyd, May 19 2018

A317722 Number of connected graphs with n nodes and no node a member of more than one cycle.

Original entry on oeis.org

1, 1, 2, 3, 8, 18, 56, 165, 563, 1937, 7086, 26396, 101383, 395821, 1573317, 6335511, 25825861, 106344587, 441919711, 1851114466, 7809848543, 33162241547, 141636863809, 608144007472, 2623832050460, 11370768445682, 49478287669666, 216109924932762, 947216963083175
Offset: 0

Views

Author

R. J. Mathar, Aug 05 2018

Keywords

Comments

The sequence counts connected, loopless, undirected graphs with cycles that do not overlap (cycles have length >= 2), which means any pair of cycles does not have common edges or nodes.
Examples of these graphs are the trees (A000055), the unicyclic graphs (A001429, A002094), or the graphs with cycles without chords.
The concept is both narrower and wider than the concept for Husimi trees, because cycles in Husimi trees may share nodes (but not edges), and because cycles in Husimi trees need to have length >= 3.
There is a mapping/contraction of these graphs to trees: replace each cycle by a single node, attaching all edges that enter a node in the cycle to that node. That tree associated with the graph could be called the skeleton tree.
By reversing that surjection of the graphs to trees, we may generate our graphs with non-overlapping cycles by generating the set of weighted trees (A303841) and replacing the nodes by cycles of lengths that equals their weight.

Crossrefs

Cf. A036250, A381468 (without 2-cycles).

Programs

  • PARI
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])}
    R(n,y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p + p*y*(p/(1 - p) + (p + p2)/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + p + (raise(g,2) - g^2 + y*(r + c - 2*p))/2 }
    { Vec(G(30)) } \\ Andrew Howroyd, Feb 25 2025

Formula

a(n) >= A036250(n).

Extensions

a(5) corrected. - R. J. Mathar, Aug 12 2018

A301739 The number of trees with 4 nodes labeled by positive integers, where each tree's label sum is n.

Original entry on oeis.org

2, 4, 10, 17, 30, 44, 67, 91, 126, 163, 213, 265, 333, 403, 491, 582, 693, 807, 944, 1084, 1249, 1418, 1614, 1814, 2044, 2278, 2544, 2815, 3120, 3430, 3777, 4129, 4520, 4917, 5355, 5799, 6287, 6781, 7321, 7868, 8463, 9065, 9718, 10378, 11091, 11812, 12588, 13372, 14214, 15064
Offset: 4

Views

Author

R. J. Mathar, Mar 26 2018

Keywords

Comments

Computed by the sum over the A000055(4)=2 shapes of the trees: the linear graph of the n-Butane, and the star graph of (1)-Methyl-Propane.

Examples

			a(4)=2 because there is a linear tree with all labels equal 1 and the star tree with all labels equal to 1.
		

Crossrefs

4th column of A303841.

Programs

  • Maple
    x^4*(2+2*x+2*x^2+x^3+x^4)/(1+x)^2/(x-1)^4/(1+x+x^2) ;
    taylor(%,x=0,80) ;
    gfun[seriestolist](%) ;

Formula

a(n) = A005993(n-4)+A000601(n-4).
G.f.: x^4*(2+2*x+2*x^2+x^3+x^4)/((1+x)^2*(x-1)^4*(1+x+x^2) ).

A303842 Triangle read by rows: T(s,n) (s>=1 and 2<=n<=s+1) = number of trees with n nodes and positive integer edge labels with label sum s.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 6, 6, 6, 1, 3, 9, 15, 16, 11, 1, 3, 13, 26, 43, 37, 23, 1, 4, 17, 46, 88, 116, 96, 47, 1, 4, 23, 68, 169, 273, 329, 239, 106, 1, 5, 28, 103, 287, 585, 869, 918, 622, 235, 1, 5, 35, 141, 467, 1104, 2031, 2695, 2609, 1607, 551
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Examples

			The triangle starts
1;
1   1;
1   1   2;
1   2   3    3;
1   2   6    6    6;
1   3   9    15   16    11;
1   3   13   26   43    37     23;
1   4   17   46   88    116    96    47;
1   4   23   68   169   273    329   239  106;
1   5   28   103  287   585    869   918  622    235;
1   5   35   141  467   1104   2031  2695 2609   1607   551;
1   6   42   195  711   1972   4211  6882 8399   ...    4235  1301;
1   6   50   253  1051  3270   8108 15513 23152  ...    ... ;
1   7   58   330  1489  5222  14552 32191 56291  ...    ... ;
1   7   68   412  2063  7958  24846 62014 124958  ...    ... ;
		

Crossrefs

Cf. A303841 (labeled nodes), A000055 (diagonal), A027852 (subdiagonal), A303833 (subdiagonal), A304914 (row sums).

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    b(n)={my(v=[1]); for(i=1, n, v=concat([1], v + EulerMT(y*v))); Ser(v)*y*(1-x)}
    seq(n)={my(g=b(n)); Vec(g + (substvec(g, [x,y], [x^2,y^2]) - g^2)*x/(2*(1-x)) - y)}
    {my(A=seq(15)); for(n=1, #A, print(Vecrev(A[n]/y^2)))} \\ Andrew Howroyd, May 20 2018
Showing 1-4 of 4 results.