A303911 Triangle T(w>=1,1<=n<=w) read by rows: the number of rooted weighted trees with n nodes and weight w.
1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 10, 13, 9, 1, 5, 16, 31, 35, 20, 1, 6, 24, 60, 98, 95, 48, 1, 7, 33, 103, 217, 304, 262, 115, 1, 8, 44, 162, 423, 764, 945, 727, 286, 1, 9, 56, 241, 743, 1658, 2643, 2916, 2033, 719, 1, 10, 70, 341, 1221, 3224, 6319, 8996, 8984, 5714, 1842, 1, 11, 85, 466, 1893
Offset: 1
Examples
The triangle starts 1 ; 1 1 ; 1 2 2 ; 1 3 5 4 ; 1 4 10 13 9 ; 1 5 16 31 35 20 ; 1 6 24 60 98 95 48 ; 1 7 33 103 217 304 262 115 ; The first column (for a single node n=1) is 1, because all the weight is on that node.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- F. Harary, G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math. 101 (1959) 141-162, W(x,y) equation (9a)
Programs
-
PARI
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} seq(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerMT(y*v))); v} {my(A=seq(10)); for(n=1, #A, print(Vecrev(A[n])))} \\ Andrew Howroyd, May 19 2018
Comments