A048802
Number of labeled rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
1, 3, 16, 133, 1521, 22184, 393681, 8233803, 198342718, 5408091155, 164658043397, 5537255169582, 203840528337291, 8153112960102283, 352079321494938344, 16325961781591781401, 809073412162081974237, 42674870241038732398720, 2386963662244981472850709
Offset: 1
G.f. = x + 3*x^2 + 16*x^3 + 133*x^4 + 1521*x^5 + 22184*x^6 + 393681*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 861
- B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Index entries for sequences related to rooted trees
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[Exp[x]-1 ,{x,0,nn}]],x] (* Geoffrey Critzer, Sep 16 2012 *)
-
{a(n) = sum( k=1, n, stirling(n, k, 2) * k^(k - 1))}; /* Michael Somos, Jun 09 2012 */
-
{a(n) = n! * polcoeff( serreverse( log(1 + x*exp(-x +x*O(x^n))) ),n)}
for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 24 2016
A282190
E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function.
Original entry on oeis.org
1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...
- G. C. Greubel, Table of n, a(n) for n = 0..375
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's MathWorld, Stirling Transform
-
b:= proc(n, m) option remember;
`if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 03 2021
-
Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]
Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]
-
x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017
A035051
Number of labeled rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
0, 1, 2, 12, 116, 1555, 26682, 558215, 13781448, 392209380, 12641850510, 455198725025, 18109373455164, 788854833679549, 37343190699472322, 1908871649888004240, 104789417805394595600, 6148562290130009617619
Offset: 0
- Warren D. Smith and David Warme, Paper in preparation, 2002.
- T. D. Noe, Table of n, a(n) for n=0..100
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465, 2016.
- I. M. Gessel and L. H. Kalikow, Hypergraphs and a functional equation...
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 864
- D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, University of Virginia, 1998.
-
f[n_] := Sum[ n^i*StirlingS2[n - 1, i], {i, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Apr 05 2012 *)
Table[If[n == 0, 0, BellB[n - 1, n]], {n, 0, 100}] (* Emanuele Munarini, May 23 2014 *)
-
a(n):=if n=0 then 0 else sum(stirling2(n-1,k)*n^k,k,0,n);
makelist(a(n),n,0,12); /* Emanuele Munarini, May 23 2014 */
-
for(n=0,30, print1(sum(k=0,n-1, stirling(n-1,k,2)*n^k), ", ")) \\ G. C. Greubel, Nov 17 2017
A036250
Number of trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
1, 1, 2, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060, 4333718587353, 15255879756033
Offset: 0
Cf.
A000055,
A007718,
A007719,
A038052,
A191646,
A303837,
A321155,
A321229,
A321254,
A321256,
A322111.
-
max = 30; B[] = 1; Do[B[x] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = B[x] - B[x]^2/2 + B[x^2]/2; CoefficientList[1 + A[x] + O[x]^max, x] (* Jean-François Alcover, Jan 28 2019 *)
A038051
G.f.: B(x/(1-x)) where B is g.f. of A000169.
Original entry on oeis.org
1, 3, 14, 98, 944, 11642, 175108, 3108310, 63601168, 1473864722, 38152990484, 1091172974102, 34169139856024, 1162736848398010, 42723615842296540, 1685853467536076798, 71101435046807892512, 3191843270961299033762, 151956292916451992949028
Offset: 1
-
CoefficientList[Series[E^x*(-LambertW[-x]/(1+LambertW[-x])/x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)
A323619
Expansion of e.g.f. 1 - LambertW(-log(1+x))*(2 + LambertW(-log(1+x)))/2.
Original entry on oeis.org
1, 1, 0, 2, 3, 44, 260, 3534, 40796, 658440, 11066184, 220005840, 4750650432, 114430365048, 2993377996440, 85208541290040, 2611784941760640, 85941161628865344, 3018822193183216320, 112805065528683216192, 4467115744449046110720, 186900232401341222964480, 8237944325702047624948224
Offset: 0
-
[n le 0 select 1 else (&+[StirlingFirst(n,k)*k^(k-2): k in [1..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
-
seq(n!*coeff(series(1-LambertW(-log(1+x))*(2+LambertW(-log(1+x)))/2, x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 28 2019
-
nmax = 22; CoefficientList[Series[1 - LambertW[-Log[1 + x]] (2 + LambertW[-Log[1 + x]])/2, {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[Sum[StirlingS1[n, k] k^(k - 2), {k, n}], {n, 22}]]
-
{a(n) = if(n==0,1, sum(k=1,n, stirling(n,k,1)*k^(k-2)))};
vector(25, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
-
[1] + [sum((-1)^(k+n)*stirling_number1(n,k)*k^(k-2) for k in (1..n)) for n in (1..25)] # G. C. Greubel, Feb 07 2019
A350746
Triangle read by rows: T(n,k) is the number of labeled quasi-loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
2, 3, 4, 16, 18, 8, 133, 155, 72, 16, 1521, 1810, 910, 240, 32, 22184, 26797, 14145, 4180, 720, 64, 393681, 480879, 262514, 83230, 16520, 2016, 128, 8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256
Offset: 1
Triangle begins:
2;
3, 4;
16, 18, 8;
133, 155, 72, 16;
1521, 1810, 910, 240, 32;
22184, 26797, 14145, 4180, 720, 64;
393681, 480879, 262514, 83230, 16520, 2016, 128;
8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256;
...
Except at n=1, the first column is
A048802 (
A048802 takes value 1 at n=1).
-
qltconn[0] = 0; qltconn[1] = 2; qltconn[n_] := qltconn[n] = Sum[StirlingS2[n, k]*(k^(k - 1)), {k, 1, n}] (*qltconn is the number of connected quasi loop threshold graphs on n vertices*); T[n_, l_] := T[n, l] := (Factorial[n]/Factorial[l])*Coefficient[(Sum[(qltconn[k]*(x^k))/Factorial[k], {k, 1, n}])^l, x, n]; Table[T[n, l], {n, 1, 12}, {l, 1, n}]
Showing 1-7 of 7 results.
Comments