cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A030438 a(n) = A030019(n)*n! (or A035051*(n-1)!).

Original entry on oeis.org

1, 1, 2, 24, 696, 37320, 3201840, 401914800, 69458497920, 15813882201600, 4587474713068800, 1651825133370720000, 722868238335090355200, 377862727500237858278400, 232536825223980698118297600
Offset: 0

Views

Author

David Warme (warme(AT)s3i.com)

Keywords

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Formula

a(n) = (n-1)! Sum_{i=0}^{n-1} Stirling2(n-1, i) n^i, n >= 1.

A030019 Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

Original entry on oeis.org

1, 1, 1, 4, 29, 311, 4447, 79745, 1722681, 43578820, 1264185051, 41381702275, 1509114454597, 60681141052273, 2667370764248023, 127258109992533616, 6549338612837162225, 361680134713529977507, 21333858798449021030515, 1338681172839439064846881
Offset: 0

Views

Author

David Warme (warme(AT)s3i.com)

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n labeled nodes, i.e. connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134954 for hyperforests.
Also number of labeled connected graphs where every block is a complete graph (cf. A035053).
Let H = (V,E) be the complete hypergraph on N labeled vertices (all edges having cardinality 2 or greater). Let e in E and K = |e|. Then the number of distinct spanning trees of H that contain edge e is g(N,K) = K * E[X_N^{N-K}] / N and the K=1 case gives this sequence. Clearly there is some deep structural connection between spanning trees in hypergraphs and Poisson moments.

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 18}](* Jean-François Alcover, Sep 12 2012, from 2nd formula *)
  • PARI
    {a(n)=if(n==0,1,(n-1)!*polcoeff(1-sum(k=0, n-2, a(k+1)*x^k/k!*exp(-(k+1)*(exp(x+O(x^n))-1))), n-1))} /* Paul D. Hanna */
    
  • PARI
    /* E.g.f. of sequence shifted left one place: */
    {a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(m*x*A+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} /* Paul D. Hanna */

Formula

a(n) = A035051(n)/n for n > 0.
a(n) = Sum_{i=0...n-1} Stirling2(n-1, i) n^(i-1), n >= 1. (Warme, Corollary 3.15.1, p. 59)
a(n) = E[X_n^{n-1}] / n, n >= 1, where X_n is a Poisson random variable with mean n.
1 = Sum_{n>=0} a(n+1) * x^n/n! * exp( -(n+1)*(exp(x)-1) ). - Paul D. Hanna, Jun 11 2011
E.g.f. satisfies: A(x) = Sum_{n>=0} exp(n*x*A(x)-1)/n! = Sum_{n>=0} a(n+1)*x^n/n!. - Paul D. Hanna, Sep 25 2011
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^(k-1)*k^(n-1)/k!. Cf. A052888. For a refinement of this sequence see A210587. - Peter Bala, Apr 05 2012
a(n) ~ n^(n-2) / (sqrt(1+LambertW(1)) * (LambertW(1))^(n-1) * exp((2-1/LambertW(1))*n)). - Vaclav Kotesovec, Jul 26 2014

Extensions

More terms, formula and comment from Christian G. Bower Dec 15 1999

A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n unlabeled nodes, i.e., connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134955 for hyperforests.
Graphs where every block is a complete graph are also called block graphs or clique tree. They can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
  {{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018

Formula

G.f.: A(x)=1+(C(x)-1)*(1-B(x)). B: G.f. for A007563. C: G.f. for A035052.
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
a(n) = A304937(n) - A304937(n-1) for n>1, a(n) = 1 for n<2. - Gus Wiseman, May 22 2018

A242817 a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).

Original entry on oeis.org

1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
Offset: 0

Views

Author

Emanuele Munarini, May 23 2014

Keywords

Crossrefs

Main diagonal of A189233 and of A292860.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, (1+
          add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 17 2016
  • Mathematica
    Table[BellB[n, n], {n, 0, 100}]
  • Maxima
    a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n);
    makelist(a(n),n,0,30);
    
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ Michel Marcus, Apr 20 2016

Formula

E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018

Extensions

Name corrected by Pontus von Brömssen, Dec 05 2020

A007563 Number of rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A144042.
Cf. A245566.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018

Formula

Shifts left when Euler transform is applied twice.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524044275... (see A245566), c = 0.1977574301782950818433893126632477845870281049591883888... . - Vaclav Kotesovec, Jul 26 2014

Extensions

New description from Christian G. Bower, Oct 15 1998

A007549 Number of increasing rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 3, 14, 89, 716, 6967, 79524, 1041541, 15393100, 253377811, 4596600004, 91112351537, 1959073928124, 45414287553455, 1129046241331316, 29965290866974493, 845605519848379436, 25282324544244718411, 798348403914242674980, 26549922456617388029641
Offset: 1

Views

Author

Keywords

Comments

In an increasing rooted graph, nodes are numbered and the numbers increase as you move away from the root.
(a(n+1)/a(n))/n tends to 1/A073003 = 1.676875... (same limit as A029768). - Vaclav Kotesovec, Jul 26 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A029768.
Row sums of A078341. Column k=1 of A264436.

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(exptr(a)): a:= n-> `if`(n=0, 1, b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum[ Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = exptr[ exptr[a] ]; a[n_] := If[n == 0, 1, b[n-1]]; Table[ a[n], {n, 1, 19}] (* Jean-François Alcover, May 10 2012, after Alois P. Heinz *)

Formula

Shifts left when exponentiated twice.
Conjecture: a(n) = Sum_{i=0..2^(n-2) - 1} b(i) for n > 1 with a(1) = 1 where b(n) = (L(n) + 2)*b(f(n)) + Sum_{k=0..L(n) - 1} (1 - R(n,k))*b(f(n) + 2^k*(1 - R(n,k))) for n > 0 with b(0) = 1, L(n) = A000523(n), f(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2. Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jul 21 2024
Conjecture: a(n) = D^(n-1)(exp(x)) evaluated at x = 0, where D denotes the operator exp(x)*(1 + x)*d/dx. - Peter Bala, Feb 24 2025

Extensions

New description from Christian G. Bower, Oct 15 1998

A035052 Number of sets of rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 134, 444, 1518, 5318, 18989, 68856, 252901, 938847, 3517082, 13278844, 50475876, 193014868, 741963015, 2865552848, 11113696421, 43266626430, 169019868095, 662337418989, 2602923589451, 10256100717875
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr(aa): seq(a(n), n=0..25); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[aa]; c = etr[b]; aa = Function[{n}, If[n == 0, 0, c[n-1]]]; a = etr[aa]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([1], EulerT(v))} \\ Andrew Howroyd, May 20 2018

Formula

Euler transform of A007563.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.35683683547585... . - Vaclav Kotesovec, Jul 26 2014

A210586 Triangle T(n,k) read by rows: T(n,k) is the number of rooted hypertrees on n labeled vertices with k hyperedges, n >= 2, k >= 1.

Original entry on oeis.org

2, 3, 9, 4, 48, 64, 5, 175, 750, 625, 6, 540, 5400, 12960, 7776, 7, 1519, 30870, 156065, 252105, 117649, 8, 4032, 154112, 1433600, 4587520, 5505024, 2097152, 9, 10287, 704214, 11160261, 62001450, 141363306, 133923132, 43046721, 10, 25500, 3025000, 77700000, 695100000, 2646000000, 4620000000, 3600000000, 1000000000
Offset: 2

Views

Author

Peter Bala, Mar 26 2012

Keywords

Comments

A hypergraph H is a pair (V,E) consisting of a finite set V of vertices and a set E of hyperedges given by subsets of V containing at least two elements. A walk in a hypergraph H connecting vertices v0 and vn is a sequence v0, e1, v1, e2, ... , v(n-1), en, vn, where each vi is in V and each ei is in E and for each ei the set {v(i-1),vi} is contained in ei. If for every pair of vertices v and v0 there is a walk in H starting at v and ending at v0 then H is called connected. A walk is a cycle if it contains at least two edges, all of the ei are distinct and all of the vi are distinct except v0 = vn. A connected hypergraph with no cycles is called a hypertree. A rooted hypertree is a hypertree in which one particular vertex is selected as being the root. For the enumeration of unrooted hypertrees see A210587.

Examples

			Triangle begins
.n\k.|....1.....2......3.......4.......5.......6
= = = = = = = = = = = = = = = = = = = = = = = = =
..2..|....2
..3..|....3.....9
..4..|....4....48.....64
..5..|....5...175....750.....625
..6..|....6...540...5400...12960....7776
..7..|....7..1519..30870..156065..252105..117649
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 48. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
Choosing one of the four vertices as the root gives a total of 4x12 = 48 rooted hypertrees on 4 vertices.
		

Crossrefs

Cf. A035051 (row sums). Cf. A210587, A048993.

Programs

  • Maple
    with(combinat):
    A210586 := (n, k) -> n^k*stirling2(n-1, k):
    for n from 2 to 10 do seq(A210586(n, k), k = 1..n-1) end do;
    # Peter Bala, Oct 28 2015
  • PARI
    T(n,k) = {n^k*stirling(n-1,k,2)}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018

Formula

T(n,k) = n^k*Stirling2(n-1,k). T(n,k) = n*A210587(n,k).
E.g.f. A(x,t) = t + 2*x*t^2/2! + (3*x + 9*x^2)*t^3/3! + ... satisfies A(x,t) = t*exp(x*(exp(A(x,t)) - 1)).
Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^k*k^(n-1)x^k/k!.
Row sums A035051.
The e.g.f. is essentially the series reversion of t/F(x,t) w.r.t. t, where F(x,t) = exp(x*(exp(t) - 1)) is the e.g.f. of the Stirling numbers of the second kind A048993. - Peter Bala, Oct 28 2015
Showing 1-8 of 8 results.