Original entry on oeis.org
1, 1, 2, 24, 696, 37320, 3201840, 401914800, 69458497920, 15813882201600, 4587474713068800, 1651825133370720000, 722868238335090355200, 377862727500237858278400, 232536825223980698118297600
Offset: 0
David Warme (warme(AT)s3i.com)
- Warren D. Smith and David Warme, Paper in preparation, 2002.
A030019
Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).
Original entry on oeis.org
1, 1, 1, 4, 29, 311, 4447, 79745, 1722681, 43578820, 1264185051, 41381702275, 1509114454597, 60681141052273, 2667370764248023, 127258109992533616, 6549338612837162225, 361680134713529977507, 21333858798449021030515, 1338681172839439064846881
Offset: 0
David Warme (warme(AT)s3i.com)
- Warren D. Smith and David Warme, Paper in preparation, 2002.
- Alois P. Heinz, Table of n, a(n) for n = 0..370 (first 101 terms from T. D. Noe)
- Ayomikun Adeniran and Catherine Yan, Gončarov Polynomials in Partition Lattices and Exponential Families, arXiv:1907.07814 [math.CO], 2019.
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 810.
- Louis H. Kalikow, Enumeration of parking functions, allowable permutation pairs, and labeled trees, PhD thesis, Brandeis University, 1999.
- R. Lorentz, S. Tringali, and C.H. Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015.
- Adam Piggott, The symmetries of Mccullough-Miller space, 2011, preprint.
- Adam Piggott, The symmetries of Mccullough-Miller space, Algebra and Discrete Mathematics 14(2) (2012), 239-266.
- D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner Trees, PhD thesis, University of Virginia, 1998, Table 5.1.
- D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner Trees, PhD thesis, University of Virginia, 1998, Table 5.1.
- Index entries for sequences related to trees
-
a[n_] := Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 18}](* Jean-François Alcover, Sep 12 2012, from 2nd formula *)
-
{a(n)=if(n==0,1,(n-1)!*polcoeff(1-sum(k=0, n-2, a(k+1)*x^k/k!*exp(-(k+1)*(exp(x+O(x^n))-1))), n-1))} /* Paul D. Hanna */
-
/* E.g.f. of sequence shifted left one place: */
{a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(m*x*A+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} /* Paul D. Hanna */
A035053
Number of connected graphs on n unlabeled nodes where every block is a complete graph.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0
From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
{{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
(End)
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
- Robert Hellmann and Eckard Bich, A systematic formulation of the virial expansion for nonadditive interaction potentials, J. Chem. Phys. 135, 084117 (2011); doi:10.1063/1.3626524 (7 pages).
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Block Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Wikipedia, Block graph.
Cf.
A007549,
A007563,
A007716,
A030019,
A035051,
A035052,
A054921,
A134957,
A134959,
A245566,
A304867,
A304887,
A304937.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
-
\\ here b(n) is A007563 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018
A242817
a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).
Original entry on oeis.org
1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
Offset: 0
-
A:= proc(n, k) option remember; `if`(n=0, 1, (1+
add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
a:= n-> A(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, May 17 2016
-
Table[BellB[n, n], {n, 0, 100}]
-
a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n);
makelist(a(n),n,0,30);
-
a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ Michel Marcus, Apr 20 2016
A007563
Number of rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454
Offset: 0
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1600 (first 200 terms from T. D. Noe)
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 167
- N. J. A. Sloane, Transforms
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008
-
etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018
A007549
Number of increasing rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
1, 1, 3, 14, 89, 716, 6967, 79524, 1041541, 15393100, 253377811, 4596600004, 91112351537, 1959073928124, 45414287553455, 1129046241331316, 29965290866974493, 845605519848379436, 25282324544244718411, 798348403914242674980, 26549922456617388029641
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..410 (first 200 terms from Vincenzo Librandi)
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
-
exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(exptr(a)): a:= n-> `if`(n=0, 1, b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
-
exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum[ Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = exptr[ exptr[a] ]; a[n_] := If[n == 0, 1, b[n-1]]; Table[ a[n], {n, 1, 19}] (* Jean-François Alcover, May 10 2012, after Alois P. Heinz *)
A035052
Number of sets of rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 134, 444, 1518, 5318, 18989, 68856, 252901, 938847, 3517082, 13278844, 50475876, 193014868, 741963015, 2865552848, 11113696421, 43266626430, 169019868095, 662337418989, 2602923589451, 10256100717875
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr(aa): seq(a(n), n=0..25); # Alois P. Heinz, Sep 09 2008
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[aa]; c = etr[b]; aa = Function[{n}, If[n == 0, 0, c[n-1]]]; a = etr[aa]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([1], EulerT(v))} \\ Andrew Howroyd, May 20 2018
A210586
Triangle T(n,k) read by rows: T(n,k) is the number of rooted hypertrees on n labeled vertices with k hyperedges, n >= 2, k >= 1.
Original entry on oeis.org
2, 3, 9, 4, 48, 64, 5, 175, 750, 625, 6, 540, 5400, 12960, 7776, 7, 1519, 30870, 156065, 252105, 117649, 8, 4032, 154112, 1433600, 4587520, 5505024, 2097152, 9, 10287, 704214, 11160261, 62001450, 141363306, 133923132, 43046721, 10, 25500, 3025000, 77700000, 695100000, 2646000000, 4620000000, 3600000000, 1000000000
Offset: 2
Triangle begins
.n\k.|....1.....2......3.......4.......5.......6
= = = = = = = = = = = = = = = = = = = = = = = = =
..2..|....2
..3..|....3.....9
..4..|....4....48.....64
..5..|....5...175....750.....625
..6..|....6...540...5400...12960....7776
..7..|....7..1519..30870..156065..252105..117649
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 48. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
Choosing one of the four vertices as the root gives a total of 4x12 = 48 rooted hypertrees on 4 vertices.
-
with(combinat):
A210586 := (n, k) -> n^k*stirling2(n-1, k):
for n from 2 to 10 do seq(A210586(n, k), k = 1..n-1) end do;
# Peter Bala, Oct 28 2015
-
T(n,k) = {n^k*stirling(n-1,k,2)}
for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
Showing 1-8 of 8 results.
Comments