cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 91 results. Next

A134958 Number of hypertrees with n labeled vertices: analog of A030019 when edges of size 1 are allowed (with no two equal edges).

Original entry on oeis.org

1, 2, 4, 32, 464, 9952, 284608, 10207360, 441006336, 22312355840, 1294525492224, 84749726259200, 6181332806029312, 497099907500220416, 43702202601439608832, 4169993748235341529088, 429217455330896263577600, 47406138617171801211797504
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Programs

  • Maple
    a:= n-> 2^n*`if`(n=0, 1, add(Stirling2(n-1, i)*n^(i-1), i=0...n-1)):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 21 2019

Formula

Equals 2^n*A030019(n).

A030438 a(n) = A030019(n)*n! (or A035051*(n-1)!).

Original entry on oeis.org

1, 1, 2, 24, 696, 37320, 3201840, 401914800, 69458497920, 15813882201600, 4587474713068800, 1651825133370720000, 722868238335090355200, 377862727500237858278400, 232536825223980698118297600
Offset: 0

Views

Author

David Warme (warme(AT)s3i.com)

Keywords

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Formula

a(n) = (n-1)! Sum_{i=0}^{n-1} Stirling2(n-1, i) n^i, n >= 1.

A048143 Number of labeled connected simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 84, 6348, 7743728, 2414572893530, 56130437190053299918162
Offset: 0

Views

Author

Greg Huber, May 12 1983

Keywords

Comments

Also number of connected antichains on a labeled n-set.

Examples

			For n=3 we could have 2 edges (in 3 ways), 3 edges (1 way), or 3 edges and a triangle (1 way), so a(3)=5.
a(5) = 1+75+645+1655+2005+1345+485+115+20+2 = 6348.
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 17 2006
Entry revised by N. J. A. Sloane, Jul 27 2006

A025065 Number of palindromic partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629
Offset: 0

Views

Author

Keywords

Comments

That is, the number of partitions of n into parts which can be listed in palindromic order.
Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - T. D. Noe, Aug 05 2005
Also, partial sums of A035363.
Also number of partitions of n with at most one part occurring an odd number of times. - Reinhard Zumkeller, Dec 18 2013
The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - Clark Kimberling, Jan 20 2014
a(n) is the number of partitions p of n+1 such that 2*max(p) > n+1. - Clark Kimberling, Apr 20 2014.
From Gus Wiseman, Nov 28 2018: (Start)
Also the number of integer partitions of n + 2 that are the vertex-degrees of some hypertree. For example, the a(6) = 7 partitions of 8 that are the vertex-degrees of some hypertree, together with a realizing hypertree are:
(41111): {{1,2},{1,3},{1,4},{1,5}}
(32111): {{1,2},{1,3},{1,4},{2,5}}
(22211): {{1,2},{1,3},{2,4},{3,5}}
(311111): {{1,2},{1,3},{1,4,5,6}}
(221111): {{1,2},{1,3},{2,4,5,6}}
(2111111): {{1,2},{1,3,4,5,6,7}}
(11111111): {{1,2,3,4,5,6,7,8}}
(End)
Conjecture: a(n) is the length of maximal initial segment of A308355(n-1) that is identical to row n of A128628, for n >= 2. - Clark Kimberling, May 24 2019
From Gus Wiseman, May 21 2021: (Start)
The Heinz numbers of palindromic partitions are given by A265640. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
Also the number of integer partitions of n with a part greater than or equal to n/2. This is equivalent to Clark Kimberling's final comment above. The Heinz numbers of these partitions are given by A344414. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(211) (311) (51) (61) (62)
(321) (421) (71)
(411) (511) (422)
(3111) (4111) (431)
(521)
(611)
(4211)
(5111)
(41111)
Also the number of integer partitions of n with at least n/2 parts. The Heinz numbers of these partitions are given by A344296. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (21) (22) (221) (222) (2221) (2222)
(11) (111) (31) (311) (321) (3211) (3221)
(211) (2111) (411) (4111) (3311)
(1111) (11111) (2211) (22111) (4211)
(3111) (31111) (5111)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			The partitions for the first few values of n are as follows:
n: partitions .......................... number
1: 1 ................................... 1
2: 2 11 ................................ 2
3: 3 111 ............................... 2
4: 4 22 121 1111 ....................... 4
5: 5 131 212 11111 ..................... 4
6: 6 141 33 222 1221 11211 111111 ...... 7
7: 7 151 313 11311 232 21112 1111111 ... 7
From _Reinhard Zumkeller_, Jan 23 2010: (Start)
Partitions into 1,2,4,6,... for the first values of n:
1: 1 ....................................... 1
2: 2 11 .................................... 2
3: 21 111 .................................. 2
4: 4 22 211 1111 ........................... 4
5: 41 221 2111 11111 ....................... 4
6: 6 42 4211 222 2211 21111 111111.......... 7
7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)
		

Crossrefs

Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010
The bisections are both A000070.
The ordered version (palindromic compositions) is A016116.
The complement is counted by A233771 and A210249.
The case of palindromic prime signature is A242414.
Palindromic partitions are ranked by A265640, with complement A229153.
The case of palindromic plane trees is A319436.
The multiplicative version (palindromic factorizations) is A344417.
A000569 counts graphical partitions.
A027187 counts partitions of even length, ranked by A028260.
A035363 counts partitions into even parts, ranked by A066207.
A058696 counts partitions of even numbers, ranked by A300061.
A110618 counts partitions with length <= half sum, ranked by A344291.

Programs

  • Haskell
    a025065 = p (1:[2,4..]) where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Haskell
    import Data.List (group)
    a025065 = length . filter (<= 1) .
                       map (sum . map ((`mod` 2) . length) . group) . ps 1
       where ps x 0 = [[]]
             ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Mathematica
    Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *)
    n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *)
    CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *)
  • PARI
    N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014

Formula

a(n) = A000070(A004526(n)). - Reinhard Zumkeller, Jan 23 2010
G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [Joerg Arndt, Mar 11 2014]
a(2*k+2) = a(2*k) + A000041(k + 1). - David A. Corneth, May 29 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2*Pi*sqrt(n)). - Vaclav Kotesovec, Nov 16 2021

Extensions

Edited by N. J. A. Sloane, Dec 29 2007
Prepended a(0)=1, added more terms, Joerg Arndt, Mar 11 2014

A305843 Number of labeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 27, 1245, 1308285, 912811093455, 291201248260060977862887, 14704022144627161780742038728709819246535634969, 12553242487940503914363982718112298267975272588471811456164576678961759219689708372356843289
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 27 spanning intersecting set-systems:
{{1,2,3}}
{{1},{1,2,3}}
{{2},{1,2,3}}
{{3},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{2},{1,2},{2,3},{1,2,3}}
{{3},{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{}]]&],{n,1,4}]

Formula

Inverse binomial transform of A051185.

A134954 Number of "hyperforests" on n labeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.

Original entry on oeis.org

1, 1, 2, 8, 55, 562, 7739, 134808, 2846764, 70720278, 2021462055, 65365925308, 2359387012261, 94042995460130, 4102781803365418, 194459091322828280, 9950303194613104995, 546698973373090998382, 32101070021048906407183, 2006125858248695722280564
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Comments

The part of the name "assuming that each edge contains at least two vertices" is ambiguous. It may mean that not all n vertices have to be covered by some edge of the hypergraph, i.e., it is not necessarily a spanning hyperforest. However it is common to represent uncovered vertices as singleton edges, as in my example. - Gus Wiseman, May 20 2018

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
The a(3) = 8 labeled spanning hyperforests are the following:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(Stirling2(n-1,i) *n^(i-1), i=0..n-1) end: B:= proc(n) x-> add(b(k) *x^k/k!, k=0..n) end: a:= n-> coeff(series(exp(B(n)(x)), x, n+1), x,n) *n!: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 09 2008
  • Mathematica
    b[n_] := b[n] = Sum[StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; B[n_][x_] := Sum[b[k] *x^k/k!, {k, 0, n}]; a[0]=1; a[n_] := SeriesCoefficient[ Exp[B[n][x]], {x, 0, n}] *n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)

Formula

Exponential transform of A030019. - N. J. A. Sloane, Jan 30 2008
Binomial transform of A304911. - Gus Wiseman, May 20 2018
a(n) = Sum of n!*Product_{k=1..n} (A030019(k)/k!)^c_k / (c_k)! over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ exp((n+1)/LambertW(1)) * n^(n-2) / (sqrt(1+LambertW(1)) * exp(2*n+2) * (LambertW(1))^n). - Vaclav Kotesovec, Jul 26 2014

A305844 Number of labeled spanning intersecting antichains on n vertices.

Original entry on oeis.org

1, 1, 1, 5, 50, 2330, 1407712, 229800077244, 423295097236295093695
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 5 spanning intersecting antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{},{1}],Select[Tuples[#,2],UnsameQ@@#&&Complement@@#=={}&]=={}]&],{n,1,4}]

Formula

Inverse binomial transform of A001206(n + 1).

A275307 Number of labeled spanning blobs on n vertices.

Original entry on oeis.org

1, 1, 2, 44, 4983, 7565342, 2414249587694, 56130437054842366160898
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2016

Keywords

Comments

A clutter is a set of sets comprising a connected antichain in the Boolean algebra B_n. A blob is defined as a clutter that cannot be capped by a tree.

Examples

			The a(3)=2 blobs are: {{1,2,3}}, {{1,2},{1,3},{2,3}}.
		

Crossrefs

Cf. A048143 (clutters), A030019 (hypertrees), A052888 (tail trees).

Formula

Every clutter is a tree of blobs, so we have A048143(n) = Sum_p n^(k-1) Prod_i a(|p_i|+1), where the sum is over all set partitions U(p_1,...,p_k) = {1,...,n-1}.

A304867 Number of non-isomorphic hypertrees of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 6, 13, 20, 41, 70, 144, 266, 545, 1072, 2210, 4491, 9388, 19529, 41286, 87361, 186657, 399927, 862584, 1866461, 4058367, 8852686, 19384258, 42570435, 93783472, 207157172, 458805044, 1018564642, 2266475432, 5053991582, 11292781891, 25280844844
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A hypertree E is a connected antichain of finite sets satisfying Sum_{e in E} (|e| - 1) = |U(E)| - 1. The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A035053).
From Kevin Ryde, Feb 25 2020: (Start)
a(n), except at n=1, is the number of free trees of n edges (so n+1 vertices) where any two leaves are an even distance apart. All trees are bipartite graphs and this condition is equivalent to all leaves being in the same bipartite half. The diameter of a tree is always between two leaves so these trees have even diameter (A000676).
The correspondence between hypertrees and these free trees is described for instance by Bacher (start of section 1.2). In such a free tree, call a vertex "even" if it is an even distance from a leaf. The hypertree vertices are these even vertices. Each hyperedge is the set of vertices surrounding an odd vertex, so hypertree weight is the total number of edges in the free tree.
(End)

Examples

			Non-isomorphic representatives of the a(6) = 5 hypertrees are the following:
  {{1,2,3,4,5,6}}
  {{1,2},{1,3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2},{1,3},{1,4}}
  {{1,2},{1,3},{2,4}}
Non-isomorphic representatives of the a(7) = 6 hypertrees are the following:
  {{1,2,3,4,5,6,7}}
  {{1,2},{1,3,4,5,6}}
  {{1,2,3},{1,4,5,6}}
  {{1,2},{1,3},{1,4,5}}
  {{1,2},{1,3},{2,4,5}}
  {{1,3},{2,4},{1,2,5}}
From _Kevin Ryde_, Feb 25 2020: (Start)
a(6) = 5 hypertrees of weight 6 and their corresponding free trees of 6 edges (7 vertices).  Each * is an "odd" vertex (odd distance to a leaf).  Each hyperedge is the set of "even" vertices surrounding an odd.
  {1,2,3,4,5,6}       3   2
                       \ /
                      4-*-1      (star 7)
                       / \
                      5   6
  .
  {1,2},{1,3,4,5}               /-3
                      2--*--1--*--4
                                \-5
  .
  {1,2,3},{1,4,5}     2-\       /-4
                         *--1--*
                      3-/       \-5
  .
  {1,2},{1,3},{1,4}    /-*--2
                      1--*--3
                       \-*--4
  .
  {1,2},{2,4},{1,3}   3--*--1--*--2--*--4   (path 7)
(End)
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i-1), {i, 1, Length[v]}] + O[x]^Length[v];
    c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
    seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]&];
    seq[40] (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    c(n)={my(v=[1]); for(i=1, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
    seq(n)={my(u=c(n)); Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*Ser(u) + x + O(x*x^n))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n) = Sum_{k=1..floor(n/2)} A318601(n+1-k, k). - Andrew Howroyd, Aug 29 2018

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018

A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n unlabeled nodes, i.e., connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134955 for hyperforests.
Graphs where every block is a complete graph are also called block graphs or clique tree. They can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
  {{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018

Formula

G.f.: A(x)=1+(C(x)-1)*(1-B(x)). B: G.f. for A007563. C: G.f. for A035052.
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
a(n) = A304937(n) - A304937(n-1) for n>1, a(n) = 1 for n<2. - Gus Wiseman, May 22 2018
Showing 1-10 of 91 results. Next