cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A305854 Number of unlabeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 2, 10, 110, 14868, 1289830592
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			Non-isomorphic representatives of the a(3) = 10 spanning intersecting set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{3},{1,3},{2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A305856(n) - A305856(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019
a(6) from Bert Dobbelaere, Apr 28 2025

A305844 Number of labeled spanning intersecting antichains on n vertices.

Original entry on oeis.org

1, 1, 1, 5, 50, 2330, 1407712, 229800077244, 423295097236295093695
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 5 spanning intersecting antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{},{1}],Select[Tuples[#,2],UnsameQ@@#&&Complement@@#=={}&]=={}]&],{n,1,4}]

Formula

Inverse binomial transform of A001206(n + 1).

A328673 Number of integer partitions of n in which no two distinct parts are relatively prime.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 15, 2, 17, 10, 23, 2, 39, 2, 46, 18, 58, 2, 95, 8, 103, 31, 139, 2, 219, 3, 232, 59, 299, 22, 452, 4, 492, 104, 645, 5, 920, 5, 1006, 204, 1258, 8, 1785, 21, 1994, 302, 2442, 11, 3366, 71, 3738, 497, 4570, 18, 6253, 24, 6849
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2019

Keywords

Comments

A partition with no two distinct parts relatively prime is said to be intersecting.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        63         55
              1111         42               62        333        64
                           222              422       111111111  82
                           111111           2222                 442
                                            11111111             622
                                                                 4222
                                                                 22222
                                                                 1111111111
		

Crossrefs

The Heinz numbers of these partitions are A328867 (strict case is A318719).
The relatively prime case is A328672.
The strict case is A318717.
The version for non-isomorphic multiset partitions is A319752.
The version for set-systems is A305843.
The version involving all parts (not just distinct ones) is A200976.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]&]],{n,0,20}]

Formula

a(n > 0) = A200976(n) + 1.

A200976 Number of partitions of n such that each pair of parts (if any) has a common factor.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 2, 231, 58, 298, 21, 451, 3, 491, 103, 644, 4, 919, 4, 1005, 203, 1257, 7, 1784, 20, 1993, 301, 2441, 10, 3365, 70, 3737, 496, 4569, 17, 6252, 23, 6848
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2011

Keywords

Comments

a(n) is different from A018783(n) for n = 0, 31, 37, 41, 43, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, ... .
Every pair of (possibly equal) parts has a common factor > 1. These partitions are said to be (pairwise) intersecting. - Gus Wiseman, Nov 04 2019

Examples

			a(0) = 1: [];
a(4) = 2: [2,2], [4];
a(9) = 3: [3,3,3], [3,6], [9];
a(31) = 2: [6,10,15], [31];
a(41) = 4: [6,10,10,15], [6,15,20], [6,14,21], [41].
		

Crossrefs

Cf. A018783.
The version with only distinct parts compared is A328673.
The relatively prime case is A202425.
The strict case is A318717.
The version for non-isomorphic multiset partitions is A319752.
The version for set-systems is A305843.

Programs

  • Maple
    b:= proc(n, j, s) local ok, i;
          if n=0 then 1
        elif j<2 then 0
        else ok:= true;
             for i in s while ok do ok:= evalb(igcd(i, j)<>1) od;
             `if`(ok, add(b(n-j*k, j-1, [s[], j]), k=1..n/j), 0) +b(n, j-1, s)
          fi
        end:
    a:= n-> b(n, n, []):
    seq(a(n), n=0..62);
  • Mathematica
    b[n_, j_, s_] := Module[{ok, i, is}, Which[n == 0, 1, j < 2, 0, True, ok = True; For[is = 1, is <= Length[s] && ok, is++, i = s[[is]]; ok = GCD[i, j] != 1]; If[ok, Sum[b[n-j*k, j-1, Append[s, j]], {k, 1, n/j}], 0] + b[n, j-1, s]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Dec 26 2013, translated from Maple *)
    Table[Length[Select[IntegerPartitions[n],And[And@@(GCD[##]>1&)@@@Select[Tuples[Union[#],2],LessEqual@@#&]]&]],{n,0,20}] (* Gus Wiseman, Nov 04 2019 *)

Formula

a(n > 0) = A328673(n) - 1. - Gus Wiseman, Nov 04 2019

A318717 Number of strict integer partitions of n in which no two parts are relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 2, 32, 13, 38, 7, 57, 2, 54, 19, 68, 3, 95, 3, 90, 33, 104, 3, 148, 7, 149, 40, 166, 5, 230, 17, 226, 56, 256, 6, 360, 9, 340, 84, 390, 25, 527, 11, 513, 109
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(20) = 11 partitions:
  (20),
  (12,8), (14,6), (15,5), (16,4), (18,2),
  (10,6,4), (10,8,2), (12,6,2), (14,4,2),
  (8,6,4,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,30}]

Extensions

a(51)-a(69) from Alois P. Heinz, Sep 02 2018

A318715 Number of strict integer partitions of n with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 8, 0, 2, 0, 5, 0, 10, 0, 4, 0, 13, 0, 15, 0, 3, 1, 13, 0, 19, 0, 9, 1, 24, 0, 20
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(67) = 10 strict integer partitions are
  (45,12,10) (42,15,10) (40,15,12) (33,22,12) (28,21,18)
  (36,15,10,6) (30,15,12,10) (28,21,12,6) (24,18,15,10)
  (24,15,12,10,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,GCD@@#==1,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,50}]

Extensions

a(71)-a(85) from Robert Price, Sep 08 2018

A305857 Number of unlabeled intersecting antichains on up to n vertices.

Original entry on oeis.org

1, 2, 3, 6, 15, 87, 3528, 47174113
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other.

Examples

			Non-isomorphic representatives of the a(4) = 15 intersecting antichains:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Formula

a(n) = A305855(0) + A305855(1) + ... + A305855(n). - Brendan McKay, May 11 2020

Extensions

a(6) from Andrew Howroyd, Aug 13 2019
a(7) from Brendan McKay, May 11 2020

A318719 Heinz numbers of strict integer partitions in which no two parts are relatively prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And[SquareFreeQ[#],And@@(GCD[##]>1&)@@@Select[Tuples[PrimePi/@FactorInteger[#][[All,1]],2],Less@@#&]]&]

A327040 Number of set-systems covering n vertices, every two of which appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 4, 72, 25104, 2077196832, 9221293229809363008, 170141182628636920877978969957369949312
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(2) = 4 set-systems:
  {}  {{1}}  {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The unlabeled multiset partition version is A319752.
The BII-numbers of these set-systems are A326853.
The antichain case is A327020.
The pairwise intersecting case is A327037.
The non-covering version is A327039.
The case where the dual is strict is A327053.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]

Formula

Inverse binomial transform of A327039.

Extensions

a(5)-a(7) from Christian Sievers, Oct 22 2023

A328867 Heinz numbers of integer partitions in which no two distinct parts are relatively prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 128, 129, 131, 133, 137, 139, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A partition with no two distinct parts relatively prime is said to be intersecting.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   21: {2,4}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A328673.
The strict case is A318719.
The relatively prime version is A328868.
A ranking using binary indices is A326910.
The version for non-isomorphic multiset partitions is A319752.
The version for divisibility (instead of relative primality) is A316476.

Programs

  • Mathematica
    Select[Range[100],And@@(GCD[##]>1&)@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
Showing 1-10 of 41 results. Next