cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A003182 Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.

Original entry on oeis.org

2, 3, 5, 10, 30, 210, 16353, 490013148, 1392195548889993358, 789204635842035040527740846300252680
Offset: 0

Views

Author

Keywords

Comments

NP-equivalence classes of unate Boolean functions of n or fewer variables.
Also the number of simple games with n players in minimal winning form up to isomorphism. - Fabián Riquelme, Mar 13 2018
The labeled case is A000372. - Gus Wiseman, Feb 23 2019
First differs from A348260(n + 1) at a(5) = 210, A348260(6) = 233. - Gus Wiseman, Nov 28 2021
Pawelski & Szepietowski show that a(n) = A001206(n) (mod 2) and that a(9) = 6 (mod 210). - Charles R Greathouse IV, Feb 16 2023

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(3) = 10 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{1,2}}    {{1,2}}
               {{1},{2}}  {{1},{2}}
                          {{1,2,3}}
                          {{1},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. H. Wiedemann, personal communication.

Crossrefs

Formula

a(n) = A306505(n) + 1. - Gus Wiseman, Jul 02 2019

Extensions

a(7) added by Timothy Yusun, Sep 27 2012
a(8) from Pawelski added by Michel Marcus, Sep 01 2021
a(9) from Pawelski added by Michel Marcus, May 11 2023

A305854 Number of unlabeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 2, 10, 110, 14868, 1289830592
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			Non-isomorphic representatives of the a(3) = 10 spanning intersecting set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{3},{1,3},{2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A305856(n) - A305856(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019
a(6) from Bert Dobbelaere, Apr 28 2025

A306005 Number of non-isomorphic set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

A set-system is a finite set of finite nonempty sets (edges). The weight is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 12 set-systems:
  {{1,2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = A283877(n) - A330053(n). - Gus Wiseman, Dec 09 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019

A306006 Number of non-isomorphic intersecting set-systems of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 10, 16, 30, 57, 109, 209, 431, 873, 1850, 3979, 8819, 19863
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. The weight of S is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 10 set-systems:
{{1,2,3,4,5,6}}
{{5},{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{3},{2,3},{1,2,3}}
{{4},{1,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Extensions

a(10)-a(17) from Bert Dobbelaere, May 04 2025

A007363 Maximal self-dual antichains on n points.

Original entry on oeis.org

0, 1, 3, 5, 20, 168, 11748, 12160647
Offset: 1

Views

Author

Keywords

Comments

From Gus Wiseman, Jul 02 2019: (Start)
If self-dual means (pairwise) intersecting, then a(n) is the number of maximal intersecting antichains of nonempty subsets of {1..(n - 1)}. A set of sets is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. For example, the a(2) = 1 through a(5) = 20 maximal intersecting antichains are:
{1} {1} {1} {1}
{2} {2} {2}
{12} {3} {3}
{123} {4}
{12}{13}{23} {1234}
{12}{13}{23}
{12}{14}{24}
{13}{14}{34}
{23}{24}{34}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{24}{123}{134}
{34}{123}{124}
{12}{13}{14}{234}
{12}{23}{24}{134}
{13}{23}{34}{124}
{14}{24}{34}{123}
{123}{124}{134}{234}
(End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersecting antichains are A326372.
Intersecting antichains of nonempty sets are A001206.
Unlabeled intersecting antichains are A305857.
Maximal antichains of nonempty sets are A326359.
The case with empty edges allowed is A326363.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* Gus Wiseman, Jul 02 2019 *)
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 0, a(n) = A326363(n - 1) - 1 = A326362(n - 1) + n - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) from Elijah Beregovsky, May 06 2020

A306505 Number of non-isomorphic antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 4, 9, 29, 209, 16352, 490013147, 1392195548889993357, 789204635842035040527740846300252679
Offset: 0

Views

Author

Gus Wiseman, Feb 20 2019

Keywords

Comments

The spanning case is A006602 or A261005. The labeled case is A014466.
From Petros Hadjicostas, Apr 22 2020: (Start)
a(n) is the number of "types" of log-linear hierarchical models on n factors in the sense of Colin Mallows (see the emails to N. J. A. Sloane).
Two hierarchical models on n factors belong to the same "type" iff one can obtained from the other by a permutation of the factors.
The total number of hierarchical log-linear models on n factors (in all "types") is given by A014466(n) = A000372(n) - 1.
The name of a hierarchical log-linear model on factors is based on the collection of maximal interaction terms, which must be an antichain (by the definition of maximality).
In his example on p. 1, Colin Mallows groups the A014466(3) = 19 hierarchical log-linear models on n = 3 factors x, y, z into a(3) = 9 types. See my example below for more details. (End)
First differs from A348260(n + 1) - 1 at a(5) = 209, A348260(6) - 1 = 232. - Gus Wiseman, Nov 28 2021

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{1,2}}    {{1,2}}
             {{1},{2}}  {{1},{2}}
                        {{1,2,3}}
                        {{1},{2,3}}
                        {{1},{2},{3}}
                        {{1,3},{2,3}}
                        {{1,2},{1,3},{2,3}}
From _Petros Hadjicostas_, Apr 23 2020: (Start)
We expand _Colin Mallows_'s example from p. 1 of his list of 1991 emails. For n = 3, we have the following a(3) = 9 "types" of log-linear hierarchical models:
Type 1: ( ), Type 2: (x), (y), (z), Type 3: (x,y), (y,z), (z,x), Type 4: (x,y,z), Type 5: (xy), (yz), (zx), Type 6: (xy,z), (yz,x), (zx,y), Type 7: (xy,xz), (yx,yz), (zx,zy), Type 8: (xy,yz,zx), Type 9: (xyz).
For each model, the name only contains the maximal terms. See p. 36 in Wickramasinghe (2008) for the full description of the 19 models.
Strictly speaking, I should have used set notation (rather than parentheses) for the name of each model, but I follow the tradition of the theory of log-linear models. In addition, in an interaction term such as xy, the order of the factors is irrelevant.
Models in the same type essentially have similar statistical properties.
For example, models in Type 7 have the property that two factors are conditionally independent of one another given each level (= category) of the third factor.
Models in Type 6 are such that two factors are jointly independent from the third one. (End)
		

Crossrefs

Formula

a(n) = A003182(n) - 1.
Partial sums of A006602 minus 1.

Extensions

a(8) from A003182. - Bartlomiej Pawelski, Nov 27 2022
a(9) from A003182. - Dmitry I. Ignatov, Nov 27 2023

A306007 Number of non-isomorphic intersecting antichains of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 14, 22
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. The weight of S is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 14 set-systems:
{{1,2,3,4,5,6,7,8}}
{{1,7},{2,3,4,5,6,7}}
{{1,2,7},{3,4,5,6,7}}
{{1,5,6},{2,3,4,5,6}}
{{1,2,3,7},{4,5,6,7}}
{{1,2,5,6},{3,4,5,6}}
{{1,3,4,5},{2,3,4,5}}
{{1,2},{1,3,4},{2,3,4}}
{{1,4},{1,5},{2,3,4,5}}
{{1,5},{2,4,5},{3,4,5}}
{{1,6},{2,6},{3,4,5,6}}
{{1,6},{2,3,6},{4,5,6}}
{{2,4},{1,2,5},{3,4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

A305999 Number of unlabeled spanning intersecting set-systems on n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 6, 76, 12916
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge. A singleton is an edge containing only one vertex.

Examples

			Non-isomorphic representative of the a(3) = 6 set-systems:
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A306001(n) - A306001(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019

A306008 Number of non-isomorphic intersecting set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 10, 21, 39, 78
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 7 set-systems:
{{1,2,3,4,5,6}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

A329561 BII-numbers of intersecting antichains of sets.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 320, 512, 516, 544, 548, 576, 768, 772, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2080, 2096, 2112, 2304, 2320, 2368, 2560, 2592, 2624, 2816, 2880, 3072, 3088, 3104, 3120, 3136, 4096
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  320: {{1,2,3},{1,4}}
  512: {{2,4}}
  516: {{1,2},{2,4}}
		

Crossrefs

Intersection of A326704 (antichains) and A326910 (intersecting).
Covering intersecting antichains of sets are counted by A305844.
BII-numbers of antichains with empty intersection are A329560.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&]
Showing 1-10 of 16 results. Next