A006826 Erroneous version of A003182.
1, 3, 5, 10, 30, 210, 16353
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(2)=6 from the antichains {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}. From _Gus Wiseman_, Feb 20 2019: (Start) The a(0) = 2 through a(3) = 20 antichains: {} {} {} {} {{}} {{}} {{}} {{}} {{1}} {{1}} {{1}} {{2}} {{2}} {{12}} {{3}} {{1}{2}} {{12}} {{13}} {{23}} {{123}} {{1}{2}} {{1}{3}} {{2}{3}} {{1}{23}} {{2}{13}} {{3}{12}} {{12}{13}} {{12}{23}} {{13}{23}} {{1}{2}{3}} {{12}{13}{23}} (End)
nn=5; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[stableSets[Subsets[Range[n]],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *) Table[Total[Boole[Table[UnateQ[BooleanFunction[k, n]], {k, 0, 2^(2^n) - 1}]]], {n, 0, 4}] (* Eric W. Weisstein, Jun 27 2023 *)
a(2)=5 from the antichains {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}. From _Gus Wiseman_, Feb 20 2019: (Start) The a(0) = 1 through a(3) = 19 antichains: {{}} {{}} {{}} {{}} {{1}} {{1}} {{1}} {{2}} {{2}} {{12}} {{3}} {{1}{2}} {{12}} {{13}} {{23}} {{123}} {{1}{2}} {{1}{3}} {{2}{3}} {{1}{23}} {{2}{13}} {{3}{12}} {{12}{13}} {{12}{23}} {{13}{23}} {{1}{2}{3}} {{12}{13}{23}} (End) From _Lorenzo Sauras Altuzarra_, Apr 02 2023: (Start) The 19 sets E such that ({1, 2, 3}, E) is an abstract simplicial complex: {} {{1}} {{2}} {{3}} {{1}, {2}} {{1}, {3}} {{2}, {3}} {{1}, {2}, {3}} {{1}, {2}, {1, 2}} {{1}, {3}, {1, 3}} {{2}, {3}, {2, 3}} {{1}, {2}, {3}, {1, 2}} {{1}, {2}, {3}, {1, 3}} {{1}, {2}, {3}, {2, 3}} {{1}, {2}, {3}, {1, 2}, {1, 3}} {{1}, {2}, {3}, {1, 2}, {2, 3}} {{1}, {2}, {3}, {1, 3}, {2, 3}} {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (End)
nn=5; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[stableSets[Subsets[Range[n],{1,n}],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *) A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]]; A@372 - 1 (* Jean-François Alcover, Jan 07 2020 *)
Non-isomorphic representatives of the a(5) = 9 antichains are: ((12345)), ((1)(2345)), ((12)(134)), ((12)(345)), ((1)(2)(345)), ((1)(23)(45)), ((2)(13)(14)), ((1)(2)(3)(45)), ((1)(2)(3)(4)(5)).
From _Gus Wiseman_, Feb 23 2019: (Start) Non-isomorphic representatives of the a(0) = 1 through a(4) = 20 antichains: {} {{1}} {{12}} {{123}} {{1234}} {{1}{2}} {{1}{23}} {{1}{234}} {{13}{23}} {{12}{34}} {{1}{2}{3}} {{14}{234}} {{12}{13}{23}} {{1}{2}{34}} {{134}{234}} {{1}{24}{34}} {{1}{2}{3}{4}} {{13}{24}{34}} {{14}{24}{34}} {{13}{14}{234}} {{12}{134}{234}} {{1}{23}{24}{34}} {{124}{134}{234}} {{12}{13}{24}{34}} {{14}{23}{24}{34}} {{12}{13}{14}{234}} {{123}{124}{134}{234}} {{13}{14}{23}{24}{34}} {{12}{13}{14}{23}{24}{34}} (End)
Maximal simplices of the a(0) = 1 through a(3) = 9 simplicial complexes: {} {{1}} {{12}} {{123}} {{1}{2}} {{1}{23}} {{2}{13}} {{3}{12}} {{12}{13}} {{12}{23}} {{13}{23}} {{1}{2}{3}} {{12}{13}{23}}
nn=5; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[stableSets[Subsets[Range[n],{2,n}],SubsetQ]],{n,0,nn}]
From _Gus Wiseman_, Feb 20 2019: (Start) Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains: {} {{1}} {{12}} {{123}} {{1234}} {{}} {{1}{2}} {{1}{23}} {{1}{234}} {{13}{23}} {{12}{34}} {{1}{2}{3}} {{14}{234}} {{12}{13}{23}} {{1}{2}{34}} {{134}{234}} {{1}{24}{34}} {{1}{2}{3}{4}} {{13}{24}{34}} {{14}{24}{34}} {{13}{14}{234}} {{12}{134}{234}} {{1}{23}{24}{34}} {{124}{134}{234}} {{12}{13}{24}{34}} {{14}{23}{24}{34}} {{12}{13}{14}{234}} {{123}{124}{134}{234}} {{13}{14}{23}{24}{34}} {{12}{13}{14}{23}{24}{34}} (End)
The a(2) = 8 antichains: {} {{1}} {{2}} {{1,2}} {{1},{2}} {{1},{1,2}} {{2},{1,2}} {{1},{2},{1,2}}
The a(3) = 5 antichains: {{1,2,3}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,3},{2,3}}
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)
From _Gus Wiseman_, Jul 02 2019: (Start) The a(1) = 1 through a(3) = 8 minimal covers: {{1}} {{1,2}} {{1,2,3}} {{1},{2}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1,2},{1,3}} {{1,2},{2,3}} {{1},{2},{3}} {{1,3},{2,3}} (End)
a:= n-> add(add((-1)^i* binomial(k,i) *(2^k-1-i)^n, i=0..k)/k!, k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2008
Table[Sum[Sum[Binomial[n,i]StirlingS2[i,k](2^k-k-1)^(n-i),{i,k,n}],{k,2,n}]+1,{n,1,20}] (* Geoffrey Critzer, Jun 27 2013 *)
Comments