A378302 Number of nondegenerate balanced Boolean functions of n variables.
0, 2, 2, 58, 12618, 601016690, 1832624137336299922, 23951146041928082853307218802404658090, 5768658823449206338089748357862286887548602533639737369730665340966207267034
Offset: 0
Links
- Aniruddha Biswas and Palash Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See pp. 4, 6.
Programs
-
Mathematica
a[n_]:=Sum[(-1)^(n-i)*Binomial[n,i]*Binomial[2^i,2^(i-1)],{i,n}]; Array[a,9,0] (* Stefano Spezia, Nov 24 2024 *)
-
Python
from math import comb def A378302(n): return sum(-comb(n,i)*comb(1<
Chai Wah Wu, Dec 11 2024
Formula
a(n) = Sum_{i=1..n} (-1)^(n-i) * binomial(n,i) * binomial(2^i,2^(i-1)).
Comments