cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A006126 Number of hierarchical models on n labeled factors or variables with linear terms forced. Also number of antichain covers of a labeled n-set.

Original entry on oeis.org

2, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Keywords

Comments

An antichain cover is a cover such that no element of the cover is a subset of another element of the cover.
Also, the number of nondegenerate monotone Boolean functions of n variables in an n-variable Boolean algebra. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
Also, number of simplicial complexes on an n-element vertex set. - Richard Stanley, Feb 10 2019
There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A006602. The non-covering case is A000372, which is A014466 plus 1. - Gus Wiseman, Mar 31 2019
From Petros Hadjicostas, Apr 10 2020: (Start)
Hierarchical models are always nonempty because they always include an intercept (or overall effect).
The total number of log-linear hierarchical models on n labeled factors (categorical variables) with no forcing of terms is given by A000372(n) - 1 (Dedekind numbers minus 1).
Hierarchical log-linear models for analyzing contingency tables are defined in the classic book by Bishop, Fienberg, and Holland (1975). (End)

Examples

			a(5) = 1 + 90 + 790 + 1895 + 2116 + 1375 + 490 + 115 + 20 + 2 = 6894.
There are 9 antichain covers of a labeled 3-set: {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
From _Gus Wiseman_, Feb 23 2019: (Start)
The a(0) = 2 through a(3) = 9 antichains:
  {}    {{1}}  {{12}}    {{123}}
  {{}}         {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 08 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • C. L. Mallows, personal communication.
  • A. A. Mcintosh, personal communication.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables, In Preparation.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn=4;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&]],{n,0,nn}] (* Gus Wiseman, Feb 23 2019 *)
    A000372 = Cases[Import["https://oeis.org/A000372/b000372.txt", "Table"], {, }][[All, 2]];
    lg = Length[A000372];
    a372[n_] := If[0 <= n <= lg-1, A000372[[n+1]], 0];
    a[n_] := Sum[(-1)^(n-k+1) Binomial[n, k-1] a372[k-1], {k, 0, lg}];
    a /@ Range[0, lg-1] (* Jean-François Alcover, Jan 07 2020 *)

Formula

a(n) = Sum_{k = 1..C(n, floor(n/2))} b(k, n), where b(k, n) is the number of k-antichain covers of a labeled n-set.
Inverse binomial transform of A000372. - Gus Wiseman, Feb 24 2019

Extensions

Last 3 terms from Michael Bulmer (mrb(AT)maths.uq.edu.au)
Antichain interpretation from Vladeta Jovovic and Goran Kilibarda, Jul 31 2000
a(0) = 2 added by Gus Wiseman, Feb 23 2019
Name edited by Petros Hadjicostas, Apr 08 2020
a(9) using A000372 added by Bruno L. O. Andreotti, May 14 2023

A000372 Dedekind numbers or Dedekind's problem: number of monotone Boolean functions of n variables, number of antichains of subsets of an n-set, number of elements in a free distributive lattice on n generators, number of Sperner families.

Original entry on oeis.org

2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788, 286386577668298411128469151667598498812366
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing function from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the empty antichain which contains no subsets and the antichain consisting of only the empty set.
a(n) is also equal to the number of upsets of an n-set S. A set U of subsets of S is an upset if whenever A is in U and B is a superset of A then B is in U. - W. Edwin Clark, Nov 06 2003
Also the number of simple games with n players in minimal winning form. - Fabián Riquelme, May 29 2011
The unlabeled case is A003182. - Gus Wiseman, Feb 20 2019
From Amiram Eldar, May 28 2021 and Michel Marcus, Apr 07 2023: (Start)
The terms were first calculated by:
a(0)-a(4) - Dedekind (1897)
a(5) - Church (1940)
a(6) - Ward (1946)
a(7) - Church (1965, verified by Berman and Kohler, 1976)
a(8) - Wiedemann (1991)
a(9) - Jäkel (2023)
a(9) - independently computed by Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass, and Christian Plessl (2023)
(End)

Examples

			a(2)=6 from the antichains {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 2 through a(3) = 20 antichains:
  {}    {}     {}        {}
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Ian Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, Antichains in ordered sets [in Spanish], Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico, Vol. 27 (1987), pp. 1-21.
  • Joel Berman and Peter Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, Vol. 121 (1976), pp. 103-124.
  • Garrett Birkhoff, Lattice Theory, American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • Michael A. Harrison, Introduction to Switching and Automata Theory, McGraw Hill, NY, 1965, p. 188.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • A. D. Korshunov, The number of monotone Boolean functions, Problemy Kibernet, No. 38, (1981), 5-108, 272. MR0640855 (83h:06013)
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, in D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971, pp. 173-181.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, pp. 38 and 214.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables in an n-variable boolean algebra. In preparation.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n]],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    Table[Total[Boole[Table[UnateQ[BooleanFunction[k, n]], {k, 0, 2^(2^n) - 1}]]], {n, 0, 4}] (* Eric W. Weisstein, Jun 27 2023 *)

Formula

The asymptotics can be found in the Korshunov paper. - Boris Bukh, Nov 07 2003
a(n) = Sum_{k=1..n} binomial(n,k)*A006126(k) + 2, i.e., this sequence is the inverse binomial transform of A006126, plus 2. E.g., a(3) = 3*1 + 3*2 + 1*9 + 2 = 20. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
From J. M. Aranda, Jun 12 2021: (Start)
a(n) = A132581(2^n) = A132581(2^n-2^m) + A132581(2^n-2^(n-m)) for n >= m >= 0.
a(n) = A132582(3*2^n -1) for n >= 0.
(End)

Extensions

a(8) from D. H. Wiedemann, personal communication, Nov 03 1990
Additional comments from Michael Somos, Jun 10 2002
a(9) from C. Jäkel added by Michel Marcus, Apr 04 2023

A014466 Dedekind numbers: monotone Boolean functions, or nonempty antichains of subsets of an n-set.

Original entry on oeis.org

1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787, 286386577668298411128469151667598498812365
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing functions from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the antichain consisting of only the empty set, but excludes the empty antichain.
Also counts bases of hereditary systems.
Also antichains of nonempty subsets of an n-set. The unlabeled case is A306505. The spanning case is A307249. This sequence has a similar description to A305000 except that the singletons must be disjoint from the other edges. - Gus Wiseman, Feb 20 2019
a(n) is the total number of hierarchical log-linear models on n labeled factors (categorical variables). See Wickramasinghe (2008) and Nardi and Rinaldo (2012). - Petros Hadjicostas, Apr 08 2020
From Lorenzo Sauras Altuzarra, Apr 02 2023: (Start)
a(n) is the number of labeled abstract simplicial complexes on n vertices.
A058673(n) <= a(n) <= A058891(n+1). (End)

Examples

			a(2)=5 from the antichains {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 1 through a(3) = 19 antichains:
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
From _Lorenzo Sauras Altuzarra_, Apr 02 2023: (Start)
The 19 sets E such that ({1, 2, 3}, E) is an abstract simplicial complex:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1}, {2}}
  {{1}, {3}}
  {{2}, {3}}
  {{1}, {2}, {3}}
  {{1}, {2}, {1, 2}}
  {{1}, {3}, {1, 3}}
  {{2}, {3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}}
  {{1}, {2}, {3}, {1, 3}}
  {{1}, {2}, {3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}}
  {{1}, {2}, {3}, {1, 2}, {2, 3}}
  {{1}, {2}, {3}, {1, 3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21 (1987).
  • J. Berman, "Free spectra of 3-element algebras," in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • J. Dezert, Fondations pour une nouvelle théorie du raisonnement plausible et paradoxal (la DSmT), Tech. Rep. 1/06769 DTIM, ONERA, Paris, page 33, January 2003.
  • J. Dezert, F. Smarandache, On the generating of hyper-powersets for the DSmT, Proceedings of the 6th International Conference on Information Fusion, Cairns, Australia, 2003.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Equals A000372 - 1 = A007153 + 1.
Cf. A003182, A005465, A006126, A006602, A058673 (labeled matroids), A058891 (labeled hypergraphs), A261005, A293606, A304996, A305000, A306505, A307249, A317674, A319721, A320449, A321679.

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A@372 - 1 (* Jean-François Alcover, Jan 07 2020 *)

Formula

Binomial transform of A307249 (or A006126 if its zeroth term is 1). - Gus Wiseman, Feb 20 2019
a(n) >= A005465(n) (because the hierarchical log-linear models on n factors always include all the conditional independence models considered by I. J. Good in A005465). - Petros Hadjicostas, Apr 24 2020

Extensions

Last term from D. H. Wiedemann, personal communication.
Additional comments from Michael Somos, Jun 10 2002
Term a(9) (using A000372) from Joerg Arndt, Apr 07 2023

A303362 Number of strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 50, 55, 58, 67, 78, 84, 95, 101, 113, 124, 137, 153, 169, 180, 198, 219, 242, 268, 291, 319, 342, 374, 412, 450, 492, 535, 573, 632, 685, 746, 813, 868, 944
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2018

Keywords

Examples

			The a(14) = 7 strict integer partitions are (14), (11,3), (10,4), (9,5), (8,6), (7,5,2), (7,4,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d))));
      my(a(n, m=n, b=0)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
       for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

A300913 Number of non-isomorphic connected set-systems of weight n.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 18, 37, 96, 239, 658, 1810, 5358, 16057, 50373, 161811, 536964, 1826151, 6380481, 22822280, 83587920, 312954111, 1197178941, 4674642341, 18620255306, 75606404857, 312763294254, 1317356836235, 5646694922172, 24618969819915, 109125629486233, 491554330852608
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

The weight of a set-system is the sum of cardinalities of the sets. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1: {{1}}
2: {{1,2}}
3: {{1,2,3}}
   {{2},{1,2}}
4: {{1,2,3,4}}
   {{3},{1,2,3}}
   {{1,3},{2,3}}
   {{1},{2},{1,2}}
5: {{1,2,3,4,5}}
   {{4},{1,2,3,4}}
   {{1,4},{2,3,4}}
   {{2,3},{1,2,3}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
   {{3},{1,3},{2,3}}
Non-isomorphic representatives of the a(6) = 18 connected set-systems:
  {{1,2,3,4,5,6}}
  {{5},{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1},{1,4},{2,3,4}}
  {{1},{2,3},{1,2,3}}
  {{3},{4},{1,2,3,4}}
  {{3},{1,4},{2,3,4}}
  {{3},{2,3},{1,2,3}}
  {{4},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
		

Crossrefs

Programs

Formula

Inverse Euler transform of A283877.

Extensions

a(11)-a(31) from Jean-François Alcover, Nov 07 2019

A293993 Number of unlabeled multiset antichains of weight n.

Original entry on oeis.org

1, 1, 3, 6, 16, 35, 98, 242, 690
Offset: 0

Views

Author

Gus Wiseman, Oct 21 2017

Keywords

Comments

A multiset antichain is a finite set of finite nonempty multisets, none of which is a submultiset of any other. The weight of an antichain is the sum of cardinalities (counting multiplicity) of its elements.

Examples

			Non-isomorphic representatives of the a(4) = 16 antichains are:
((1111)), ((1112)), ((1122)), ((1123)), ((1234)),
((1)(234)), ((2)(111)), ((2)(113)), ((11)(12)), ((11)(22)), ((11)(23)), ((12)(13)), ((12)(34)),
((1)(2)(34)),((2)(3)(11)),
((1)(2)(3)(4)).
		

Crossrefs

Formula

Euler transform of A293994.

A302545 Number of non-isomorphic multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. A singleton is a multiset of size 1. The weight of a multiset partition is the sum of sizes of its elements. Weight is generally not the same as number of vertices.
Also non-isomorphic multiset partitions of weight n with no endpoints, where an endpoint is a vertex appearing only once (degree 1). For example, non-isomorphic representations of the a(4) = 12 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}

Examples

			The a(4) = 12 multiset partitions:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1,1},{1,1}}
  {{1,1},{2,2}}
  {{1,2},{1,2}}
  {{1,2},{2,2}}
  {{1,2},{3,3}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
		

Crossrefs

The set-system version is A330054 (no endpoints) or A306005 (no singletons).
Non-isomorphic multiset partitions are A007716.
Set-systems with no singletons are A016031.

Programs

  • PARI
    \\ compare with similar program for A007716.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023

Extensions

Extended by Gus Wiseman, Dec 09 2019
Terms a(11) and beyond from Andrew Howroyd, Jan 15 2023

A003182 Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.

Original entry on oeis.org

2, 3, 5, 10, 30, 210, 16353, 490013148, 1392195548889993358, 789204635842035040527740846300252680
Offset: 0

Views

Author

Keywords

Comments

NP-equivalence classes of unate Boolean functions of n or fewer variables.
Also the number of simple games with n players in minimal winning form up to isomorphism. - Fabián Riquelme, Mar 13 2018
The labeled case is A000372. - Gus Wiseman, Feb 23 2019
First differs from A348260(n + 1) at a(5) = 210, A348260(6) = 233. - Gus Wiseman, Nov 28 2021
Pawelski & Szepietowski show that a(n) = A001206(n) (mod 2) and that a(9) = 6 (mod 210). - Charles R Greathouse IV, Feb 16 2023

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(3) = 10 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{1,2}}    {{1,2}}
               {{1},{2}}  {{1},{2}}
                          {{1,2,3}}
                          {{1},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. H. Wiedemann, personal communication.

Crossrefs

Formula

a(n) = A306505(n) + 1. - Gus Wiseman, Jul 02 2019

Extensions

a(7) added by Timothy Yusun, Sep 27 2012
a(8) from Pawelski added by Michel Marcus, Sep 01 2021
a(9) from Pawelski added by Michel Marcus, May 11 2023

A306005 Number of non-isomorphic set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

A set-system is a finite set of finite nonempty sets (edges). The weight is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 12 set-systems:
  {{1,2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = A283877(n) - A330053(n). - Gus Wiseman, Dec 09 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019

A304713 Squarefree numbers whose prime indices are pairwise indivisible. Heinz numbers of strict integer partitions with pairwise indivisible parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of entries together with their corresponding multiset multisystems (see A302242) begins:
1:  {}
2:  {{}}
3:  {{1}}
5:  {{2}}
7:  {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],SquareFreeQ[#]&&Select[Tuples[PrimePi/@First/@FactorInteger[#],2],UnsameQ@@#&&Divisible@@#&]==={}&]
Showing 1-10 of 46 results. Next