A003182
Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.
Original entry on oeis.org
2, 3, 5, 10, 30, 210, 16353, 490013148, 1392195548889993358, 789204635842035040527740846300252680
Offset: 0
From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(3) = 10 antichains:
{} {} {} {}
{{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1,2,3}}
{{1},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
(End)
- I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
- Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
- J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
- G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
- W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
- Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. H. Wiedemann, personal communication.
- K. S. Brown, Dedekind's problem
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See pp. 2, 14.
- Patrick De Causmaecker and Stefan De Wannemacker, On the number of antichains of sets in a finite universe, arXiv:1407.4288 [math.CO], 2014.
- Patrick De Causmaecker and Lennart Van Hirtum, Solving systems of equations on antichains for the computation of the ninth Dedekind Number, arXiv:2405.20904 [math.CO], 2024. See p. 4.
- Liviu Ilinca and Jeff Kahn, Counting maximal antichains and independent sets, arXiv:1202.4427 [math.CO], 2012; Order 30.2 (2013): 427-435.
- J. L. King, Brick tiling and monotone Boolean functions
- D. J. Kleitman, On Dedekind's problem: The number of monotone Boolean functions, Proc. Amer. Math. Soc. 21 1969 677-682.
- D. J. Kleitman and G. Markowsky, On Dedekind's problem: the number of isotone Boolean functions. II, Trans. Amer. Math. Soc. 213 (1975), 373-390.
- Sascha Kurz, Competitive learning of monotone Boolean functions, arXiv:1401.8135 [cs.DS], 2014.
- C. L. Mallows, Emails to N. J. A. Sloane, Jun-Jul 1991
- Mikaël Monet and Dan Olteanu, Towards Deterministic Decomposable Circuits for Safe Queries, 2018.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
- Bartlomiej Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables, arXiv:2108.13997 [math.CO], 2021. See Table 2 p. 2.
- Bartlomiej Pawelski, On the number of inequivalent monotone Boolean functions of 9 variables, arXiv:2305.06346 [math.CO], 2023.
- Bartłomiej Pawelski, Counting and generating monotone Boolean functions, Doctoral Diss., Univ. Gdańsk, (Poland, 2024). See pp. 12, 24, 34-35, 40, 49-50.
- Bartlomiej Pawelski and Andrzej Szepietowski, Divisibility properties of Dedekind numbers, arXiv:2302.04615 [math.CO], 2023.
- Tamon Stephen and Timothy Yusun, Counting inequivalent monotone Boolean functions, Discrete Applied Mathematics, 167 (2014), 15-24.
- Tamon Stephen and Timothy Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623 [cs.DS], 2012.
- Andrzej Szepietowski, Fixes of permutations acting on monotone Boolean functions, arXiv:2205.03868 [math.CO], 2022. See p. 17.
- Eric Weisstein's World of Mathematics, Boolean Function.
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
- Index entries for sequences related to Boolean functions
Cf.
A006126,
A014466,
A261005,
A293606,
A293993,
A304996,
A305000,
A305857,
A306505,
A319721,
A320449,
A321679.
A318099
Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets.
Original entry on oeis.org
1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains:
1: {{1}}
2: {{1,1}}
{{1,2}}
{{1},{1}}
{{1},{2}}
3: {{1,1,1}}
{{1,2,3}}
{{1},{2,2}}
{{1},{2,3}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
Cf.
A000219,
A006126,
A007716,
A049311,
A059201,
A283877,
A306007,
A316980,
A316983,
A319558,
A319560,
A319616-
A319646,
A300913.
A007363
Maximal self-dual antichains on n points.
Original entry on oeis.org
0, 1, 3, 5, 20, 168, 11748, 12160647
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Intersecting antichains are
A326372.
Intersecting antichains of nonempty sets are
A001206.
Unlabeled intersecting antichains are
A305857.
Maximal antichains of nonempty sets are
A326359.
The case with empty edges allowed is
A326363.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* Gus Wiseman, Jul 02 2019 *)
(* 2nd program *)
n = 2^6; g = CompleteGraph[n]; i = 0;
While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
sets = FindClique[g, Infinity, All];
Length[sets]-1 (* Elijah Beregovsky, May 06 2020 *)
A306505
Number of non-isomorphic antichains of nonempty subsets of {1,...,n}.
Original entry on oeis.org
1, 2, 4, 9, 29, 209, 16352, 490013147, 1392195548889993357, 789204635842035040527740846300252679
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1,2,3}}
{{1},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
From _Petros Hadjicostas_, Apr 23 2020: (Start)
We expand _Colin Mallows_'s example from p. 1 of his list of 1991 emails. For n = 3, we have the following a(3) = 9 "types" of log-linear hierarchical models:
Type 1: ( ), Type 2: (x), (y), (z), Type 3: (x,y), (y,z), (z,x), Type 4: (x,y,z), Type 5: (xy), (yz), (zx), Type 6: (xy,z), (yz,x), (zx,y), Type 7: (xy,xz), (yx,yz), (zx,zy), Type 8: (xy,yz,zx), Type 9: (xyz).
For each model, the name only contains the maximal terms. See p. 36 in Wickramasinghe (2008) for the full description of the 19 models.
Strictly speaking, I should have used set notation (rather than parentheses) for the name of each model, but I follow the tradition of the theory of log-linear models. In addition, in an interaction term such as xy, the order of the factors is irrelevant.
Models in the same type essentially have similar statistical properties.
For example, models in Type 7 have the property that two factors are conditionally independent of one another given each level (= category) of the third factor.
Models in Type 6 are such that two factors are jointly independent from the third one. (End)
- C. L. Mallows, Emails to N. J. A. Sloane, Jun-Jul 1991, p. 1.
- R. I. P. Wickramasinghe, Topics in log-linear models, Master of Science thesis in Statistics, Texas Tech University, Lubbock, TX, 2008, p. 36.
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Cf.
A000372,
A003182,
A006126,
A006602,
A014466,
A261005,
A293606,
A293993,
A304996,
A305000,
A305001,
A305857,
A317674,
A319721,
A320449,
A321679.
A306008
Number of non-isomorphic intersecting set-systems of weight n with no singletons.
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 7, 10, 21, 39, 78
Offset: 0
Non-isomorphic representatives of the a(6) = 7 set-systems:
{{1,2,3,4,5,6}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
Cf.
A007716,
A034691,
A048143,
A049311,
A116540,
A283877,
A293606,
A293607,
A304867,
A305999,
A305854-
A305857,
A306005-
A306007.
A329561
BII-numbers of intersecting antichains of sets.
Original entry on oeis.org
0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 320, 512, 516, 544, 548, 576, 768, 772, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2080, 2096, 2112, 2304, 2320, 2368, 2560, 2592, 2624, 2816, 2880, 3072, 3088, 3104, 3120, 3136, 4096
Offset: 1
The sequence of terms together with their corresponding set-systems begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
8: {{3}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
512: {{2,4}}
516: {{1,2},{2,4}}
Covering intersecting antichains of sets are counted by
A305844.
BII-numbers of antichains with empty intersection are
A329560.
Cf.
A000120,
A048143,
A048793,
A070939,
A087086,
A305857,
A306007,
A326031,
A326361,
A326912,
A329628.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&]
A329628
Smallest BII-number of an intersecting antichain with n edges.
Original entry on oeis.org
0, 1, 20, 52, 2880, 275520
Offset: 0
The sequence of terms together with their corresponding set-systems begins:
0: {}
1: {{1}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
2880: {{1,2,3},{1,4},{2,4},{3,4}}
275520: {{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,5}}
The not necessarily intersecting version is
A329626.
MM-numbers of intersecting antichains are
A329366.
BII-numbers of antichains are
A326704.
BII-numbers of intersecting set-systems are
A326910.
BII-numbers of intersecting antichains are
A329561.
Covering intersecting antichains of sets are
A305844.
Non-isomorphic intersecting antichains of multisets are
A306007.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&],Length[bpe[#]]&]
A326372
Number of intersecting antichains of (possibly empty) subsets of {1..n}.
Original entry on oeis.org
2, 3, 5, 13, 82, 2647, 1422565, 229809982113, 423295099074735261881
Offset: 0
The a(0) = 2 through a(3) = 13 antichains:
{} {} {} {}
{{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The case without empty edges is
A001206.
The inverse binomial transform is the spanning case
A305844.
Maximal intersecting antichains are
A326363.
Intersecting set systems are
A051185.
Showing 1-8 of 8 results.
Comments