cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A048143 Number of labeled connected simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 84, 6348, 7743728, 2414572893530, 56130437190053299918162
Offset: 0

Views

Author

Greg Huber, May 12 1983

Keywords

Comments

Also number of connected antichains on a labeled n-set.

Examples

			For n=3 we could have 2 edges (in 3 ways), 3 edges (1 way), or 3 edges and a triangle (1 way), so a(3)=5.
a(5) = 1+75+645+1655+2005+1345+485+115+20+2 = 6348.
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 17 2006
Entry revised by N. J. A. Sloane, Jul 27 2006

A303362 Number of strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 50, 55, 58, 67, 78, 84, 95, 101, 113, 124, 137, 153, 169, 180, 198, 219, 242, 268, 291, 319, 342, 374, 412, 450, 492, 535, 573, 632, 685, 746, 813, 868, 944
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2018

Keywords

Examples

			The a(14) = 7 strict integer partitions are (14), (11,3), (10,4), (9,5), (8,6), (7,5,2), (7,4,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d))));
      my(a(n, m=n, b=0)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
       for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

A303837 Number of z-trees with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. Then a z-tree is a finite connected set of pairwise indivisible positive integers greater than 1 with clutter density -1.
This is a generalization to multiset systems of the usual definition of hypertree (viz. connected hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A030019(k).

Examples

			The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
      (72): {{1,1,1,2,2}}
    (8,18): {{1,1,1},{1,2,2}}
    (8,36): {{1,1,1},{1,1,2,2}}
    (9,24): {{2,2},{1,1,1,2}}
   (6,8,9): {{1,2},{1,1,1},{2,2}}
  (8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
       (60): {{1,1,2,3}}
     (4,30): {{1,1},{1,2,3}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]

A304118 Number of z-blobs with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.
If n is squarefree with k prime factors, then a(n) = A275307(k).

Examples

			The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.
        (60): {{1,1,2,3}}
     (12,30): {{1,1,2},{1,2,3}}
     (20,30): {{1,1,3},{1,2,3}}
   (6,15,20): {{1,2},{2,3},{1,1,3}}
  (10,12,15): {{1,3},{1,1,2},{2,3}}
  (12,15,20): {{1,1,2},{2,3},{1,1,3}}
  (12,20,30): {{1,1,2},{1,1,3},{1,2,3}}
The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.
       (120): {{1,1,1,2,3}}
     (24,30): {{1,1,1,2},{1,2,3}}
     (24,60): {{1,1,1,2},{1,1,2,3}}
     (30,40): {{1,2,3},{1,1,1,3}}
     (40,60): {{1,1,1,3},{1,1,2,3}}
   (6,15,40): {{1,2},{2,3},{1,1,1,3}}
  (10,15,24): {{1,3},{2,3},{1,1,1,2}}
  (12,15,40): {{1,1,2},{2,3},{1,1,1,3}}
  (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}
  (15,20,24): {{2,3},{1,1,3},{1,1,1,2}}
  (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}
  (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}
  (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}
  (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]];
    zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]];
    zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}];
    zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}]

A293510 Number of connected minimal covers of n vertices.

Original entry on oeis.org

1, 1, 1, 4, 23, 241, 3732, 83987, 2666729, 117807298, 7217946453, 612089089261, 71991021616582, 11761139981560581, 2675674695560997301, 849270038176762472316, 376910699272413914514283, 234289022942841270608166061, 204344856617470777364053906796
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2017

Keywords

Comments

A cover of a finite set S is a finite set of finite nonempty sets with union S. A cover is minimal if removing any edge results in a cover of strictly fewer vertices. A cover is connected if it is connected as a hypergraph or clutter. Note that minimality is with respect to covering rather than to connectedness (cf. A030019).

Examples

			The a(3) = 4 covers are: ((12)(13)), ((12)(23)), ((13)(23)), ((123)).
		

Crossrefs

Programs

  • Mathematica
    nn=30;ser=Sum[(1+Sum[Binomial[n,i]*StirlingS2[i,k]*(2^k-k-1)^(n-i),{k,2,n},{i,k,n}])*x^n/n!,{n,0,nn}];
    Table[n!*SeriesCoefficient[1+Log[ser],{x,0,n}],{n,0,nn}]

A304887 Number of non-isomorphic blobs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 8, 14
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch. The weight of a blob is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A275307).

Examples

			Non-isomorphic representatives of the a(8) = 8 blobs are the following:
  {{1,2,3,4,5,6,7,8}}
  {{1,5,6},{2,3,4,5,6}}
  {{1,2,5,6},{3,4,5,6}}
  {{1,3,4,5},{2,3,4,5}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,4},{1,5},{2,3,4,5}}
  {{2,4},{1,2,5},{3,4,5}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

A303838 Number of z-forests with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1.
This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A134954(k).
Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49.

Examples

			The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
       (60): {{1,1,2,3}}
     (3,20): {{2},{1,1,3}}
     (4,15): {{1,1},{2,3}}
     (4,30): {{1,1},{1,2,3}}
     (5,12): {{3},{1,1,2}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
    (3,4,5): {{2},{1,1},{3}}
   (3,4,10): {{2},{1,1},{1,3}}
    (4,5,6): {{1,1},{3},{1,2}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]

A317672 Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        2       3
       44      24      16
     4983     940     300     125
  7565342  154770   18000    4320    1296
		

Crossrefs

Row sums are A048143. First column is A275307. Last column is A030019.

Programs

  • Mathematica
    blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A326751 BII-numbers of blobs.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 32, 52, 64, 128, 256, 512, 772, 816, 820, 832, 1024, 1072, 1088, 2048, 2320, 2340, 2356, 2368, 2580, 2592, 2612, 2624, 2836, 2852, 2864, 2868, 2880, 3088, 3104, 3120, 3136, 4096, 4132, 4160, 4612, 4640, 4644, 4672, 5120, 5152, 5184, 8192
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. In a 2-vertex-connected set-system, at least two vertices must be removed to make the set-system disconnected. A blob is a connected, 2-vertex-connected antichain of finite, nonempty sets, or, equivalently, a 2-vertex-connected clutter.

Examples

			The sequence of all blobs together with their BII-numbers begins:
     0: {}
     1: {{1}}
     2: {{2}}
     4: {{1,2}}
     8: {{3}}
    16: {{1,3}}
    32: {{2,3}}
    52: {{1,2},{1,3},{2,3}}
    64: {{1,2,3}}
   128: {{4}}
   256: {{1,4}}
   512: {{2,4}}
   772: {{1,2},{1,4},{2,4}}
   816: {{1,3},{2,3},{1,4},{2,4}}
   820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
   832: {{1,2,3},{1,4},{2,4}}
  1024: {{1,2,4}}
  1072: {{1,3},{2,3},{1,2,4}}
  1088: {{1,2,3},{1,2,4}}
  2048: {{3,4}}
  2320: {{1,3},{1,4},{3,4}}
  2340: {{1,2},{2,3},{1,4},{3,4}}
  2356: {{1,2},{1,3},{2,3},{1,4},{3,4}}
		

Crossrefs

Cf. A000120, A002218, A013922 (2-vertex-connected graphs), A030019, A048143 (clutters), A048793, A070939, A095983, A275307 (spanning blobs), A304118, A304887, A322117, A322397 (2-edge-connected clutters), A326031.
Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    tvcQ[eds_]:=And@@Table[Length[csm[DeleteCases[eds,i,{2}]]]<=1,{i,Union@@eds}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&tvcQ[bpe/@bpe[#]]&]

A322335 Number of 2-edge-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 1, 37, 2, 45, 18, 58, 8, 95, 19, 109, 45, 150, 38, 232, 59, 268, 129, 357, 155, 523, 203, 633, 359, 852, 431, 1185, 609, 1464, 969
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

First differs from A108572 at a(17) = 1, A108572(17) = 0.
An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. For example (6,6,3,2) is 2-edge-connected but (6,3,2) is not.

Examples

			The a(14) = 15 2-edge-connected integer partitions of 14:
  (7,7)   (6,4,4)   (4,4,4,2)  (4,4,2,2,2)  (4,2,2,2,2,2)  (2,2,2,2,2,2,2)
  (8,6)   (6,6,2)   (6,4,2,2)  (6,2,2,2,2)
  (10,4)  (8,4,2)   (8,2,2,2)
  (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Table[Length[Select[IntegerPartitions[n],twoedQ[primeMS/@#]&]],{n,30}]

Extensions

a(42)-a(45) from Jinyuan Wang, Jun 20 2020
Showing 1-10 of 38 results. Next