A303837 Number of z-trees with least common multiple n > 1.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1
Keywords
Examples
The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
(72): {{1,1,1,2,2}}
(8,18): {{1,1,1},{1,2,2}}
(8,36): {{1,1,1},{1,1,2,2}}
(9,24): {{2,2},{1,1,1,2}}
(6,8,9): {{1,2},{1,1,1},{2,2}}
(8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
(60): {{1,1,2,3}}
(4,30): {{1,1},{1,2,3}}
(6,20): {{1,2},{1,1,3}}
(10,12): {{1,3},{1,1,2}}
(12,15): {{1,1,2},{2,3}}
(12,20): {{1,1,2},{1,1,3}}
(15,20): {{2,3},{1,1,3}}
(4,6,10): {{1,1},{1,2},{1,3}}
(4,6,15): {{1,1},{1,2},{2,3}}
(4,10,15): {{1,1},{1,3},{2,3}}
Links
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]
Comments