A303838
Number of z-forests with least common multiple n > 1.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1
The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
(60): {{1,1,2,3}}
(3,20): {{2},{1,1,3}}
(4,15): {{1,1},{2,3}}
(4,30): {{1,1},{1,2,3}}
(5,12): {{3},{1,1,2}}
(6,20): {{1,2},{1,1,3}}
(10,12): {{1,3},{1,1,2}}
(12,15): {{1,1,2},{2,3}}
(12,20): {{1,1,2},{1,1,3}}
(15,20): {{2,3},{1,1,3}}
(3,4,5): {{2},{1,1},{3}}
(3,4,10): {{2},{1,1},{1,3}}
(4,5,6): {{1,1},{3},{1,2}}
(4,6,10): {{1,1},{1,2},{1,3}}
(4,6,15): {{1,1},{1,2},{2,3}}
(4,10,15): {{1,1},{1,3},{2,3}}
Cf.
A006126,
A030019,
A048143,
A076078,
A112798,
A134954,
A275307,
A285572,
A286518,
A286520,
A293993,
A293994,
A302242,
A303837,
A304118.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]
A333226
Least common multiple of the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 6, 5, 4, 4, 3, 6, 6, 3, 4, 6, 2, 2, 6, 2, 2, 2, 5, 4, 6, 3, 6, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 4, 4, 4, 12, 3, 6, 6, 3, 6, 6, 3, 10, 4, 6, 6, 6, 2, 2
Offset: 1
The version for binary indices is
A271410.
The version for prime indices is
A290103.
Positions of first appearances are
A333225.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of
A066099.
- The product of q(k) is
A124758(k).
Cf.
A000120,
A029931,
A048793,
A074971,
A076078,
A233564,
A285572,
A289508,
A289509,
A324837,
A333227,
A333492.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[LCM@@stc[n],{n,100}]
A343652
Number of maximal pairwise coprime sets of divisors of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1
The a(n) sets for n = 12, 30, 36, 60, 120:
{1,6} {1,30} {1,6} {1,30} {1,30}
{1,12} {1,2,15} {1,12} {1,60} {1,60}
{1,2,3} {1,3,10} {1,18} {1,2,15} {1,120}
{1,3,4} {1,5,6} {1,36} {1,3,10} {1,2,15}
{1,2,3,5} {1,2,3} {1,3,20} {1,3,10}
{1,2,9} {1,4,15} {1,3,20}
{1,3,4} {1,5,6} {1,3,40}
{1,4,9} {1,5,12} {1,4,15}
{1,2,3,5} {1,5,6}
{1,3,4,5} {1,5,12}
{1,5,24}
{1,8,15}
{1,2,3,5}
{1,3,4,5}
{1,3,5,8}
The non-maximal version counting empty sets and singletons is
A225520.
The non-maximal version with no 1's is
A343653.
The non-maximal version is
A343655.
The version for subsets of {1..n} is
A343659.
The case without 1's or singletons is
A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A324837 counts minimal subsets of {1...n} with least common multiple n.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.
Cf.
A005361,
A007359,
A051026,
A062319,
A067824,
A074206,
A146291,
A285572,
A325859,
A326359,
A326496,
A326675,
A343654.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}]
A343659
Number of maximal pairwise coprime subsets of {1..n}.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 7, 9, 9, 10, 10, 12, 16, 19, 19, 20, 20, 22, 28, 32, 32, 33, 54, 61, 77, 84, 84, 85, 85, 94, 112, 123, 158, 161, 161, 176, 206, 212, 212, 214, 214, 229, 241, 260, 260, 263, 417, 428, 490, 521, 521, 526, 655, 674, 764, 818, 818, 820, 820, 874, 918, 975, 1182, 1189, 1189
Offset: 1
The a(1) = 1 through a(9) = 7 subsets:
{1} {12} {123} {123} {1235} {156} {1567} {1567} {1567}
{134} {1345} {1235} {12357} {12357} {12357}
{1345} {13457} {13457} {12579}
{13578} {13457}
{13578}
{14579}
{15789}
The non-maximal version counting empty sets and singletons is
A084422.
The non-maximal version counting singletons is
A187106.
The version for indivisibility instead of coprimality is
A326077.
The version for sets of divisors is
A343652.
The version for sets of divisors > 1 is
A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
Cf.
A007360,
A067824,
A087087,
A225520,
A324837,
A325683,
A325859,
A326358,
A326496,
A326675,
A333227,
A343653,
A343655.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}]
A343653
Number of non-singleton pairwise coprime nonempty sets of divisors > 1 of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1
Offset: 1
The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
{2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3}
{3,4} {3,4} {2,5} {2,9} {2,5} {2,9} {3,4}
{3,8} {3,5} {3,4} {3,4} {3,4} {3,8}
{5,6} {4,9} {3,5} {3,8} {3,16}
{2,15} {4,5} {4,9} {3,32}
{3,10} {5,6} {8,9}
{2,3,5} {2,15}
{3,10}
{3,20}
{4,15}
{5,12}
{2,3,5}
{3,4,5}
The version with 1's, empty sets, and singletons is
A225520.
The version for subsets of {1..n} is
A320426.
The version for strict partitions is
A337485.
The version for compositions is
A337697.
The version for prime indices is
A337984.
The maximal case with 1's is
A343652.
The version with empty sets is a(n) + 1.
The version with singletons is
A343654(n) - 1.
The version with empty sets and singletons is
A343654.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A343659 counts maximal pairwise coprime subsets of {1..n}.
Cf.
A007359,
A067824,
A074206,
A076078,
A084422,
A187106,
A285572,
A324837,
A326675,
A327516,
A338315.
A333492
Position of first appearance of n in A271410 (LCM of binary indices).
Original entry on oeis.org
1, 2, 4, 8, 16, 6, 64, 128, 256, 18, 1024, 12, 4096, 66, 20, 32768, 65536, 258, 262144, 24, 68, 1026, 4194304, 132, 16777216, 4098, 67108864, 72, 268435456, 22, 1073741824, 2147483648, 1028, 65538, 80, 264, 68719476736, 262146, 4100, 144, 1099511627776, 70, 4398046511104
Offset: 1
The sequence together with the corresponding binary expansions and binary indices begins:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
16: 10000 ~ {5}
6: 110 ~ {2,3}
64: 1000000 ~ {7}
128: 10000000 ~ {8}
256: 100000000 ~ {9}
18: 10010 ~ {2,5}
1024: 10000000000 ~ {11}
12: 1100 ~ {3,4}
4096: 1000000000000 ~ {13}
66: 1000010 ~ {2,7}
20: 10100 ~ {3,5}
32768: 1000000000000000 ~ {16}
65536: 10000000000000000 ~ {17}
258: 100000010 ~ {2,9}
The version for prime indices is
A330225.
The version for standard compositions is
A333225.
Let q(k) be the binary indices of k:
- The elements of q(k) are row k of
A048793.
- The product of q(k) is
A096111(k).
LCM of standard compositions is
A333226.
Cf.
A000120,
A066099,
A070939,
A074761,
A076078,
A124767,
A285572,
A324837,
A328219,
A328451,
A331579,
A333227.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
q=Table[LCM@@bpe[n],{n,10000}];
Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
A330225
Position of first appearance of n in A290103 = LCM of prime indices.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1
The version for product instead of lcm is
A318871
The version for standard compositions is
A333225.
The version for binary indices is
A333492.
Let q(k) be the prime indices of k:
- The product of q(k) is
A003963(k).
- The terms of q(k) are row k of
A112798.
- The LCM of q(k) + 1 is
A328219(k).
Cf.
A000837,
A074761,
A074971,
A076078,
A285572,
A289509,
A290104,
A319333,
A324837,
A328451,
A331579,
A333226.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
q=Table[If[n==1,1,LCM@@primeMS[n]],{n,100}];
Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
Showing 1-7 of 7 results.
Comments