A062319
Number of divisors of n^n, or of A000312(n).
Original entry on oeis.org
1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0
From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
1 1 1 1 1
2 3 2 5
4 9 4 25
27 8 125
16 625
32 3125
64
128
256
(End)
Taking Omega instead of sigma gives
A066959.
Diagonal n = k of the array
A343656.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
-
A018892 counts coprime pairs of divisors.
-
A084422 counts pairwise coprime subsets of {1..n}.
-
A100565 counts pairwise coprime triples of divisors.
-
A225520 counts pairwise coprime sets of divisors.
-
A343652 counts maximal pairwise coprime sets of divisors.
-
A343653 counts pairwise coprime non-singleton sets of divisors > 1.
-
A343654 counts pairwise coprime sets of divisors > 1.
Cf.
A000169,
A000272,
A002064,
A002109,
A009998,
A048691,
A143773,
A146291,
A176029,
A327527,
A343657.
-
[NumberOfDivisors(n^n): n in [0..60]]; // Vincenzo Librandi, Nov 09 2014
-
A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
-
je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
-
{ for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
-
a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
-
a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
-
from math import prod
from sympy import factorint
def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021
A343652
Number of maximal pairwise coprime sets of divisors of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1
The a(n) sets for n = 12, 30, 36, 60, 120:
{1,6} {1,30} {1,6} {1,30} {1,30}
{1,12} {1,2,15} {1,12} {1,60} {1,60}
{1,2,3} {1,3,10} {1,18} {1,2,15} {1,120}
{1,3,4} {1,5,6} {1,36} {1,3,10} {1,2,15}
{1,2,3,5} {1,2,3} {1,3,20} {1,3,10}
{1,2,9} {1,4,15} {1,3,20}
{1,3,4} {1,5,6} {1,3,40}
{1,4,9} {1,5,12} {1,4,15}
{1,2,3,5} {1,5,6}
{1,3,4,5} {1,5,12}
{1,5,24}
{1,8,15}
{1,2,3,5}
{1,3,4,5}
{1,3,5,8}
The non-maximal version counting empty sets and singletons is
A225520.
The non-maximal version with no 1's is
A343653.
The non-maximal version is
A343655.
The version for subsets of {1..n} is
A343659.
The case without 1's or singletons is
A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A324837 counts minimal subsets of {1...n} with least common multiple n.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.
Cf.
A005361,
A007359,
A051026,
A062319,
A067824,
A074206,
A146291,
A285572,
A325859,
A326359,
A326496,
A326675,
A343654.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}]
A343655
Number of pairwise coprime sets of divisors of n, where a singleton is not considered pairwise coprime unless it is {1}.
Original entry on oeis.org
1, 2, 2, 3, 2, 6, 2, 4, 3, 6, 2, 10, 2, 6, 6, 5, 2, 10, 2, 10, 6, 6, 2, 14, 3, 6, 4, 10, 2, 22, 2, 6, 6, 6, 6, 17, 2, 6, 6, 14, 2, 22, 2, 10, 10, 6, 2, 18, 3, 10, 6, 10, 2, 14, 6, 14, 6, 6, 2, 38, 2, 6, 10, 7, 6, 22, 2, 10, 6, 22, 2, 24, 2, 6, 10, 10, 6, 22, 2
Offset: 1
For example, the a(n) subsets for n = 1, 2, 4, 6, 8, 12, 16, 24 are:
{1} {1} {1} {1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}
{1,4} {1,3} {1,4} {1,3} {1,4} {1,3}
{1,6} {1,8} {1,4} {1,8} {1,4}
{2,3} {1,6} {1,16} {1,6}
{1,2,3} {2,3} {1,8}
{3,4} {2,3}
{1,12} {3,4}
{1,2,3} {3,8}
{1,3,4} {1,12}
{1,24}
{1,2,3}
{1,3,4}
{1,3,8}
The version with empty sets and singletons is
A225520.
A version for prime indices is
A304711.
The version for strict integer partitions is
A305713.
The version for binary indices is
A326675.
The version for integer partitions is
A327516.
The version for standard compositions is
A333227.
The case without 1's with singletons is
A343654.
The maximal case without 1's is
A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.
Cf.
A007360,
A062319,
A067824,
A076078,
A084422,
A187106,
A282935,
A285572,
A304709,
A320423,
A337485,
A343659.
A343654
Number of pairwise coprime sets of divisors > 1 of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5
Offset: 1
The a(n) sets for n = 1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 48:
{} {} {} {} {} {} {} {} {} {} {}
{2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
{4} {3} {4} {3} {3} {3} {4} {3} {3}
{6} {8} {4} {4} {5} {8} {4} {4}
{2,3} {6} {6} {6} {16} {6} {6}
{12} {8} {10} {32} {9} {8}
{2,3} {12} {15} {12} {12}
{3,4} {24} {30} {18} {16}
{2,3} {2,3} {36} {24}
{3,4} {2,5} {2,3} {48}
{3,8} {3,5} {2,9} {2,3}
{5,6} {3,4} {3,4}
{2,15} {4,9} {3,8}
{3,10} {3,16}
{2,3,5}
The version for partitions is
A007359.
The version for subsets of {1..n} is
A084422.
The case without empty sets or singletons is
A343653.
The maximal case without singletons is
A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A326077 counts maximal pairwise indivisible sets.
Cf.
A007360,
A051026,
A062319,
A074206,
A087087,
A101268,
A285572,
A305713,
A320423,
A326675,
A337485,
A343655.
-
pwcop[y_]:=And@@(GCD@@#1==1&)/@Subsets[y,{2}];
Table[Length[Select[Subsets[Rest[Divisors[n]]],pwcop]],{n,100}]
A343659
Number of maximal pairwise coprime subsets of {1..n}.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 7, 9, 9, 10, 10, 12, 16, 19, 19, 20, 20, 22, 28, 32, 32, 33, 54, 61, 77, 84, 84, 85, 85, 94, 112, 123, 158, 161, 161, 176, 206, 212, 212, 214, 214, 229, 241, 260, 260, 263, 417, 428, 490, 521, 521, 526, 655, 674, 764, 818, 818, 820, 820, 874, 918, 975, 1182, 1189, 1189
Offset: 1
The a(1) = 1 through a(9) = 7 subsets:
{1} {12} {123} {123} {1235} {156} {1567} {1567} {1567}
{134} {1345} {1235} {12357} {12357} {12357}
{1345} {13457} {13457} {12579}
{13578} {13457}
{13578}
{14579}
{15789}
The non-maximal version counting empty sets and singletons is
A084422.
The non-maximal version counting singletons is
A187106.
The version for indivisibility instead of coprimality is
A326077.
The version for sets of divisors is
A343652.
The version for sets of divisors > 1 is
A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
Cf.
A007360,
A067824,
A087087,
A225520,
A324837,
A325683,
A325859,
A326358,
A326496,
A326675,
A333227,
A343653,
A343655.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}]
A343660
Number of maximal pairwise coprime sets of at least two divisors > 1 of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 6, 0, 1, 2, 2, 1, 4, 0, 4, 0, 1, 0, 8, 1, 1, 1
Offset: 1
The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
{2,3} {2,3} {2,3} {5,6} {2,3} {5,6} {2,3} {2,3}
{3,4} {3,4} {2,15} {2,9} {2,15} {2,9} {3,4}
{3,8} {3,10} {3,4} {3,10} {3,4} {3,8}
{2,3,5} {4,9} {3,20} {3,8} {3,16}
{4,15} {4,9} {3,32}
{5,12} {8,9}
{2,3,5}
{3,4,5}
The case with singletons is (also)
A343652.
The non-maximal version is
A343653.
The non-maximal version with 1's is
A343655.
The version for subsets of {2..n} is
A343659 (for n > 2).
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A066620 counts pairwise coprime 3-sets of divisors.
A100565 counts pairwise coprime unordered triples of divisors.
Cf.
A005361,
A007359,
A007360,
A067824,
A074206,
A225520,
A276187,
A320426,
A325683,
A326077,
A326359,
A326496,
A337485,
A343654.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]]],{n,100}]
Showing 1-6 of 6 results.
Comments