A343652
Number of maximal pairwise coprime sets of divisors of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1
The a(n) sets for n = 12, 30, 36, 60, 120:
{1,6} {1,30} {1,6} {1,30} {1,30}
{1,12} {1,2,15} {1,12} {1,60} {1,60}
{1,2,3} {1,3,10} {1,18} {1,2,15} {1,120}
{1,3,4} {1,5,6} {1,36} {1,3,10} {1,2,15}
{1,2,3,5} {1,2,3} {1,3,20} {1,3,10}
{1,2,9} {1,4,15} {1,3,20}
{1,3,4} {1,5,6} {1,3,40}
{1,4,9} {1,5,12} {1,4,15}
{1,2,3,5} {1,5,6}
{1,3,4,5} {1,5,12}
{1,5,24}
{1,8,15}
{1,2,3,5}
{1,3,4,5}
{1,3,5,8}
The non-maximal version counting empty sets and singletons is
A225520.
The non-maximal version with no 1's is
A343653.
The non-maximal version is
A343655.
The version for subsets of {1..n} is
A343659.
The case without 1's or singletons is
A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A324837 counts minimal subsets of {1...n} with least common multiple n.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.
Cf.
A005361,
A007359,
A051026,
A062319,
A067824,
A074206,
A146291,
A285572,
A325859,
A326359,
A326496,
A326675,
A343654.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}]
A343655
Number of pairwise coprime sets of divisors of n, where a singleton is not considered pairwise coprime unless it is {1}.
Original entry on oeis.org
1, 2, 2, 3, 2, 6, 2, 4, 3, 6, 2, 10, 2, 6, 6, 5, 2, 10, 2, 10, 6, 6, 2, 14, 3, 6, 4, 10, 2, 22, 2, 6, 6, 6, 6, 17, 2, 6, 6, 14, 2, 22, 2, 10, 10, 6, 2, 18, 3, 10, 6, 10, 2, 14, 6, 14, 6, 6, 2, 38, 2, 6, 10, 7, 6, 22, 2, 10, 6, 22, 2, 24, 2, 6, 10, 10, 6, 22, 2
Offset: 1
For example, the a(n) subsets for n = 1, 2, 4, 6, 8, 12, 16, 24 are:
{1} {1} {1} {1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}
{1,4} {1,3} {1,4} {1,3} {1,4} {1,3}
{1,6} {1,8} {1,4} {1,8} {1,4}
{2,3} {1,6} {1,16} {1,6}
{1,2,3} {2,3} {1,8}
{3,4} {2,3}
{1,12} {3,4}
{1,2,3} {3,8}
{1,3,4} {1,12}
{1,24}
{1,2,3}
{1,3,4}
{1,3,8}
The version with empty sets and singletons is
A225520.
A version for prime indices is
A304711.
The version for strict integer partitions is
A305713.
The version for binary indices is
A326675.
The version for integer partitions is
A327516.
The version for standard compositions is
A333227.
The case without 1's with singletons is
A343654.
The maximal case without 1's is
A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.
Cf.
A007360,
A062319,
A067824,
A076078,
A084422,
A187106,
A282935,
A285572,
A304709,
A320423,
A337485,
A343659.
A343654
Number of pairwise coprime sets of divisors > 1 of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5
Offset: 1
The a(n) sets for n = 1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 48:
{} {} {} {} {} {} {} {} {} {} {}
{2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
{4} {3} {4} {3} {3} {3} {4} {3} {3}
{6} {8} {4} {4} {5} {8} {4} {4}
{2,3} {6} {6} {6} {16} {6} {6}
{12} {8} {10} {32} {9} {8}
{2,3} {12} {15} {12} {12}
{3,4} {24} {30} {18} {16}
{2,3} {2,3} {36} {24}
{3,4} {2,5} {2,3} {48}
{3,8} {3,5} {2,9} {2,3}
{5,6} {3,4} {3,4}
{2,15} {4,9} {3,8}
{3,10} {3,16}
{2,3,5}
The version for partitions is
A007359.
The version for subsets of {1..n} is
A084422.
The case without empty sets or singletons is
A343653.
The maximal case without singletons is
A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A326077 counts maximal pairwise indivisible sets.
Cf.
A007360,
A051026,
A062319,
A074206,
A087087,
A101268,
A285572,
A305713,
A320423,
A326675,
A337485,
A343655.
-
pwcop[y_]:=And@@(GCD@@#1==1&)/@Subsets[y,{2}];
Table[Length[Select[Subsets[Rest[Divisors[n]]],pwcop]],{n,100}]
A343659
Number of maximal pairwise coprime subsets of {1..n}.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 7, 9, 9, 10, 10, 12, 16, 19, 19, 20, 20, 22, 28, 32, 32, 33, 54, 61, 77, 84, 84, 85, 85, 94, 112, 123, 158, 161, 161, 176, 206, 212, 212, 214, 214, 229, 241, 260, 260, 263, 417, 428, 490, 521, 521, 526, 655, 674, 764, 818, 818, 820, 820, 874, 918, 975, 1182, 1189, 1189
Offset: 1
The a(1) = 1 through a(9) = 7 subsets:
{1} {12} {123} {123} {1235} {156} {1567} {1567} {1567}
{134} {1345} {1235} {12357} {12357} {12357}
{1345} {13457} {13457} {12579}
{13578} {13457}
{13578}
{14579}
{15789}
The non-maximal version counting empty sets and singletons is
A084422.
The non-maximal version counting singletons is
A187106.
The version for indivisibility instead of coprimality is
A326077.
The version for sets of divisors is
A343652.
The version for sets of divisors > 1 is
A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
Cf.
A007360,
A067824,
A087087,
A225520,
A324837,
A325683,
A325859,
A326358,
A326496,
A326675,
A333227,
A343653,
A343655.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}]
A343653
Number of non-singleton pairwise coprime nonempty sets of divisors > 1 of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1
Offset: 1
The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
{2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3}
{3,4} {3,4} {2,5} {2,9} {2,5} {2,9} {3,4}
{3,8} {3,5} {3,4} {3,4} {3,4} {3,8}
{5,6} {4,9} {3,5} {3,8} {3,16}
{2,15} {4,5} {4,9} {3,32}
{3,10} {5,6} {8,9}
{2,3,5} {2,15}
{3,10}
{3,20}
{4,15}
{5,12}
{2,3,5}
{3,4,5}
The version with 1's, empty sets, and singletons is
A225520.
The version for subsets of {1..n} is
A320426.
The version for strict partitions is
A337485.
The version for compositions is
A337697.
The version for prime indices is
A337984.
The maximal case with 1's is
A343652.
The version with empty sets is a(n) + 1.
The version with singletons is
A343654(n) - 1.
The version with empty sets and singletons is
A343654.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A343659 counts maximal pairwise coprime subsets of {1..n}.
Cf.
A007359,
A067824,
A074206,
A076078,
A084422,
A187106,
A285572,
A324837,
A326675,
A327516,
A338315.
Showing 1-5 of 5 results.
Comments