cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A333225 Position of first appearance of n in A333226 (LCMs of compositions in standard order).

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 64, 128, 256, 66, 1024, 68, 4096, 258, 132, 32768, 65536, 1026, 262144, 264, 516, 4098
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
       1: (1)
       2: (2)
       4: (3)
       8: (4)
      16: (5)
      18: (3,2)
      64: (7)
     128: (8)
     256: (9)
      66: (5,2)
    1024: (11)
      68: (4,3)
    4096: (13)
     258: (7,2)
     132: (5,3)
   32768: (16)
   65536: (17)
    1026: (9,2)
  262144: (19)
     264: (5,4)
		

Crossrefs

The version for binary indices is A333492.
The version for prime indices is A330225.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- The GCD of q(k) is A326674(k).
- The LCM of q(k) is A333226(k).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    q=Table[LCM@@stc[n],{n,10000}];
    Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]

A228351 Triangle read by rows in which row n lists the compositions (ordered partitions) of n (see Comments lines for definition).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 3, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 4, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 1, 1, 4
Offset: 1

Views

Author

Omar E. Pol, Aug 30 2013

Keywords

Comments

The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is (list-)reversed co-lexicographic. - Joerg Arndt, Sep 02 2013
Dropping the "(list-)reversed" in the comment above gives A228525.
The equivalent sequence for partitions is A026792.
This sequence lists (without repetitions) all finite compositions, in such a way that, if [P_1, ..., P_r] denotes the composition occupying the n-th position in the list, then (((2*n/2^(P_1)-1)/2^(P_2)-1)/...)/2^(P_r)-1 = 0. - Lorenzo Sauras Altuzarra, Jan 22 2020
The k-th composition in the list is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, and taking first differences. Reversing again gives A066099, which is described as the standard ordering. Both sequences define a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 01 2020
It follows from the previous comment that A000120(k) is the length of the k-th composition that is listed by this sequence (recall that A000120(k) is the number of 1's in the binary expansion of k). - Lorenzo Sauras Altuzarra, Sep 29 2020

Examples

			Illustration of initial terms:
-----------------------------------
n  j     Diagram     Composition j
-----------------------------------
.         _
1  1     |_|         1;
.         _ _
2  1     |_  |       2,
2  2     |_|_|       1, 1;
.         _ _ _
3  1     |_    |     3,
3  2     |_|_  |     1, 2,
3  3     |_  | |     2, 1,
3  4     |_|_|_|     1, 1, 1;
.         _ _ _ _
4  1     |_      |   4,
4  2     |_|_    |   1, 3,
4  3     |_  |   |   2, 2,
4  4     |_|_|_  |   1, 1, 2,
4  5     |_    | |   3, 1,
4  6     |_|_  | |   1, 2, 1,
4  7     |_  | | |   2, 1, 1,
4  8     |_|_|_|_|   1, 1, 1, 1;
.
Triangle begins:
[1];
[2],[1,1];
[3],[1,2],[2,1],[1,1,1];
[4],[1,3],[2,2],[1,1,2],[3,1],[1,2,1],[2,1,1],[1,1,1,1];
[5],[1,4],[2,3],[1,1,3],[3,2],[1,2,2],[2,1,2],[1,1,1,2],[4,1],[1,3,1],[2,2,1],[1,1,2,1],[3,1,1],[1,2,1,1],[2,1,1,1],[1,1,1,1,1];
...
For example [1,2] occupies the 5th position in the corresponding list of compositions and indeed (2*5/2^1-1)/2^2-1 = 0. - _Lorenzo Sauras Altuzarra_, Jan 22 2020
12 --binary expansion--> [1,1,0,0] --reverse--> [0,0,1,1] --positions of 1's--> [3,4] --prepend 0--> [0,3,4] --first differences--> [3,1]. - _Lorenzo Sauras Altuzarra_, Sep 29 2020
		

Crossrefs

Row n has length A001792(n-1). Row sums give A001787, n >= 1.
Cf. A000120 (binary weight), A001511, A006519, A011782, A026792, A065120.
A related ranking of finite sets is A048793/A272020.
All of the following consider the k-th row to be the k-th composition, ignoring the coarser grouping by sum.
- Indices of weakly increasing rows are A114994.
- Indices of weakly decreasing rows are A225620.
- Indices of strictly decreasing rows are A333255.
- Indices of strictly increasing rows are A333256.
- Indices of reversed interval rows A164894.
- Indices of interval rows are A246534.
- Indices of strict rows are A233564.
- Indices of constant rows are A272919.
- Indices of anti-run rows are A333489.
- Row k has A124767(k) runs and A333381(k) anti-runs.
- Row k has GCD A326674(k) and LCM A333226(k).
- Row k has Heinz number A333219(k).
Equals A163510+1, termwise.
Cf. A124734 (increasing length, then lexicographic).
Cf. A296774 (increasing length, then reverse lexicographic).
Cf. A337243 (increasing length, then colexicographic).
Cf. A337259 (increasing length, then reverse colexicographic).
Cf. A296773 (decreasing length, then lexicographic).
Cf. A296772 (decreasing length, then reverse lexicographic).
Cf. A337260 (decreasing length, then colexicographic).
Cf. A108244 (decreasing length, then reverse colexicographic).
Cf. A228369 (lexicographic).
Cf. A066099 (reverse lexicographic).
Cf. A228525 (colexicographic).

Programs

  • Haskell
    a228351 n = a228351_list !! (n - 1)
    a228351_list = concatMap a228351_row [1..]
    a228351_row 0 = []
    a228351_row n = a001511 n : a228351_row (n `div` 2^(a001511 n))
    -- Peter Kagey, Jun 27 2016
    
  • Maple
    # Program computing the sequence:
    A228351 := proc(n) local c, k, L, N: L, N := [], [seq(2*r, r = 1 .. n)]: for k in N do c := 0: while k != 0 do if gcd(k, 2) = 2 then k := k/2: c := c+1: else L := [op(L), op(c)]: k := k-1: c := 0: fi: od: od: L[n]: end: # Lorenzo Sauras Altuzarra, Jan 22 2020
    # Program computing the list of compositions:
    List := proc(n) local c, k, L, M, N: L, M, N := [], [], [seq(2*r, r = 1 .. 2^n-1)]: for k in N do c := 0: while k != 0 do if gcd(k, 2) = 2 then k := k/2: c := c+1: else L := [op(L), c]: k := k-1: c := 0: fi: od: M := [op(M), L]: L := []: od: M: end: # Lorenzo Sauras Altuzarra, Jan 22 2020
  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Differences[Prepend[bpe[n],0]],{n,0,30}] (* Gus Wiseman, Apr 01 2020 *)
  • Python
    from itertools import count, islice
    def A228351_gen(): # generator of terms
        for n in count(1):
            k = n
            while k:
                yield (s:=(~k&k-1).bit_length()+1)
                k >>= s
    A228351_list = list(islice(A228351_gen(),30)) # Chai Wah Wu, Jul 17 2023

A333227 Numbers k such that the k-th composition in standard order is pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2020

Keywords

Comments

This is the definition used for CoprimeQ in Mathematica.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          27: (1,2,1,1)      55: (1,2,1,1,1)
   3: (1,1)        28: (1,1,3)        56: (1,1,4)
   5: (2,1)        29: (1,1,2,1)      57: (1,1,3,1)
   6: (1,2)        30: (1,1,1,2)      59: (1,1,2,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    60: (1,1,1,3)
   9: (3,1)        33: (5,1)          61: (1,1,1,2,1)
  11: (2,1,1)      35: (4,1,1)        62: (1,1,1,1,2)
  12: (1,3)        37: (3,2,1)        63: (1,1,1,1,1,1)
  13: (1,2,1)      38: (3,1,2)        65: (6,1)
  14: (1,1,2)      39: (3,1,1,1)      66: (5,2)
  15: (1,1,1,1)    41: (2,3,1)        67: (5,1,1)
  17: (4,1)        44: (2,1,3)        68: (4,3)
  18: (3,2)        47: (2,1,1,1,1)    71: (4,1,1,1)
  19: (3,1,1)      48: (1,5)          72: (3,4)
  20: (2,3)        49: (1,4,1)        75: (3,2,1,1)
  23: (2,1,1,1)    50: (1,3,2)        77: (3,1,2,1)
  24: (1,4)        51: (1,3,1,1)      78: (3,1,1,2)
  25: (1,3,1)      52: (1,2,3)        79: (3,1,1,1,1)
		

Crossrefs

A different ranking of the same compositions is A326675.
Ignoring repeated parts gives A333228.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- q(k) has A124767(k) runs and A333381(k) anti-runs.
- The GCD of q(k) is A326674(k).
- The Heinz number of q(k) is A333219(k).
- The LCM of q(k) is A333226(k).
Coprime or singleton sets are ranked by A087087.
Strict compositions are ranked by A233564.
Constant compositions are ranked by A272919.
Relatively prime compositions appear to be ranked by A291166.
Normal compositions are ranked by A333217.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@stc[#]&]

A333228 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

First differs from A291166 in lacking 69, which corresponds to the composition (4,2,1).
We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          21: (2,2,1)        39: (3,1,1,1)
   3: (1,1)        22: (2,1,2)        41: (2,3,1)
   5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
   6: (1,2)        24: (1,4)          44: (2,1,3)
   7: (1,1,1)      25: (1,3,1)        45: (2,1,2,1)
   9: (3,1)        26: (1,2,2)        46: (2,1,1,2)
  11: (2,1,1)      27: (1,2,1,1)      47: (2,1,1,1,1)
  12: (1,3)        28: (1,1,3)        48: (1,5)
  13: (1,2,1)      29: (1,1,2,1)      49: (1,4,1)
  14: (1,1,2)      30: (1,1,1,2)      50: (1,3,2)
  15: (1,1,1,1)    31: (1,1,1,1,1)    51: (1,3,1,1)
  17: (4,1)        33: (5,1)          52: (1,2,3)
  18: (3,2)        35: (4,1,1)        53: (1,2,2,1)
  19: (3,1,1)      37: (3,2,1)        54: (1,2,1,2)
  20: (2,3)        38: (3,1,2)        55: (1,2,1,1,1)
		

Crossrefs

Pairwise coprime or singleton partitions are A051424.
Coprime or singleton sets are ranked by A087087.
The version for relatively prime instead of coprime appears to be A291166.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Not ignoring repeated parts gives A333227.
The complement is A335238.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@Union[stc[#]]&]

A335235 Numbers k such that the k-th composition in standard order (A066099) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          20: (2,3)          48: (1,5)
   2: (2)          23: (2,1,1,1)      49: (1,4,1)
   3: (1,1)        24: (1,4)          50: (1,3,2)
   4: (3)          25: (1,3,1)        51: (1,3,1,1)
   5: (2,1)        27: (1,2,1,1)      52: (1,2,3)
   6: (1,2)        28: (1,1,3)        55: (1,2,1,1,1)
   7: (1,1,1)      29: (1,1,2,1)      56: (1,1,4)
   8: (4)          30: (1,1,1,2)      57: (1,1,3,1)
   9: (3,1)        31: (1,1,1,1,1)    59: (1,1,2,1,1)
  11: (2,1,1)      32: (6)            60: (1,1,1,3)
  12: (1,3)        33: (5,1)          61: (1,1,1,2,1)
  13: (1,2,1)      35: (4,1,1)        62: (1,1,1,1,2)
  14: (1,1,2)      37: (3,2,1)        63: (1,1,1,1,1,1)
  15: (1,1,1,1)    38: (3,1,2)        64: (7)
  16: (5)          39: (3,1,1,1)      65: (6,1)
  17: (4,1)        41: (2,3,1)        66: (5,2)
  18: (3,2)        44: (2,1,3)        67: (5,1,1)
  19: (3,1,1)      47: (2,1,1,1,1)    68: (4,3)
		

Crossrefs

The version counting partitions is A051424, with strict case A007360.
The version for binary indices is A087087.
The version counting compositions is A101268.
The version for prime indices is A302569.
The case without singletons is A333227.
The complement is A335236.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==1||CoprimeQ@@stc[#]&]

A335238 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are not pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 69, 70, 81, 88, 98, 104, 128, 130, 136, 138, 139, 141, 142, 160, 162, 163, 168, 170, 177, 184, 197, 198, 209, 216, 226, 232, 256, 260, 261, 262, 274, 276, 277, 278, 279, 282, 283, 285, 286, 288, 290, 292, 296, 321
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()          88: (2,1,4)      177: (2,1,4,1)
    2: (2)         98: (1,4,2)      184: (2,1,1,4)
    4: (3)        104: (1,2,4)      197: (1,4,2,1)
    8: (4)        128: (8)          198: (1,4,1,2)
   10: (2,2)      130: (6,2)        209: (1,2,4,1)
   16: (5)        136: (4,4)        216: (1,2,1,4)
   32: (6)        138: (4,2,2)      226: (1,1,4,2)
   34: (4,2)      139: (4,2,1,1)    232: (1,1,2,4)
   36: (3,3)      141: (4,1,2,1)    256: (9)
   40: (2,4)      142: (4,1,1,2)    260: (6,3)
   42: (2,2,2)    160: (2,6)        261: (6,2,1)
   64: (7)        162: (2,4,2)      262: (6,1,2)
   69: (4,2,1)    163: (2,4,1,1)    274: (4,3,2)
   70: (4,1,2)    168: (2,2,4)      276: (4,2,3)
   81: (2,4,1)    170: (2,2,2,2)    277: (4,2,2,1)
		

Crossrefs

The complement is A333228.
Not ignoring repeated parts gives A335239.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Coprime partitions are counted by A327516.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!CoprimeQ@@Union[stc[#]]&]

A335236 Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.

Original entry on oeis.org

0, 10, 21, 22, 26, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153, 154, 156, 160, 162, 163, 164
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

These are compositions whose product is strictly greater than the LCM of their parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            74: (3,2,2)        109: (1,2,1,2,1)
   10: (2,2)         76: (3,1,3)        110: (1,2,1,1,2)
   21: (2,2,1)       81: (2,4,1)        117: (1,1,2,2,1)
   22: (2,1,2)       82: (2,3,2)        118: (1,1,2,1,2)
   26: (1,2,2)       84: (2,2,3)        122: (1,1,1,2,2)
   34: (4,2)         85: (2,2,2,1)      130: (6,2)
   36: (3,3)         86: (2,2,1,2)      136: (4,4)
   40: (2,4)         87: (2,2,1,1,1)    138: (4,2,2)
   42: (2,2,2)       88: (2,1,4)        139: (4,2,1,1)
   43: (2,2,1,1)     90: (2,1,2,2)      141: (4,1,2,1)
   45: (2,1,2,1)     91: (2,1,2,1,1)    142: (4,1,1,2)
   46: (2,1,1,2)     93: (2,1,1,2,1)    146: (3,3,2)
   53: (1,2,2,1)     94: (2,1,1,1,2)    147: (3,3,1,1)
   54: (1,2,1,2)     98: (1,4,2)        148: (3,2,3)
   58: (1,1,2,2)    100: (1,3,3)        149: (3,2,2,1)
   69: (4,2,1)      104: (1,2,4)        150: (3,2,1,2)
   70: (4,1,2)      106: (1,2,2,2)      153: (3,1,3,1)
   73: (3,3,1)      107: (1,2,2,1,1)    154: (3,1,2,2)
		

Crossrefs

The version for prime indices is A316438.
The version for binary indices is A335237.
The complement is A335235.
The version with singletons allowed is A335239.
Binary indices are pairwise coprime or a singleton: A087087.
The version counting partitions is 1 + A335240.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&]

A349051 Numbers k such that the k-th composition in standard order is an alternating permutation of {1..k} for some k.

Original entry on oeis.org

0, 1, 5, 6, 38, 41, 44, 50, 553, 562, 582, 593, 610, 652, 664, 708, 788, 808, 16966, 17036, 17048, 17172, 17192, 17449, 17458, 17542, 17676, 17712, 17940, 18000, 18513, 18530, 18593, 18626, 18968, 18992, 19496, 19536, 20625, 20676, 20769, 20868, 21256, 22600
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence together with the corresponding compositions begins:
        0: ()
        1: (1)
        5: (2,1)
        6: (1,2)
       38: (3,1,2)
       41: (2,3,1)
       44: (2,1,3)
       50: (1,3,2)
      553: (4,2,3,1)
      562: (4,1,3,2)
      582: (3,4,1,2)
      593: (3,2,4,1)
      610: (3,1,4,2)
      652: (2,4,1,3)
      664: (2,3,1,4)
      708: (2,1,4,3)
      788: (1,4,2,3)
      808: (1,3,2,4)
    16966: (5,3,4,1,2)
    17036: (5,2,4,1,3)
		

Crossrefs

These permutations are counted by A001250, complement A348615.
Compositions of this type are counted by A025047, complement A345192.
Subset of A333218, which ranks permutations of initial intervals.
Subset of A345167, which ranks alternating compositions, complement A345168.
A003242 counts Carlitz (anti-run) compositions.
A345163 counts normal partitions with an alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with an alternating permutation.
Compositions in standard order are the rows of A066099:
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- GCD and LCM are given by A326674 and A333226.
- Maximal runs and anti-runs are counted by A124767 and A333381.
- Heinz number is given by A333219.
- Runs-resistance is given by A333628.
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz (anti-run) compositions are ranked by A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],Sort[stc[#]]==Range[Length[stc[#]]]&&wigQ[stc[#]]&]

Formula

Equals A333218 (permutation) /\ A345167 (alternating).

A335239 Numbers k such that the k-th composition in standard-order (A066099) does not have all pairwise coprime parts, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 21, 22, 26, 32, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 64, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 128, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            45: (2,1,2,1)     86: (2,2,1,2)
    2: (2)           46: (2,1,1,2)     87: (2,2,1,1,1)
    4: (3)           53: (1,2,2,1)     88: (2,1,4)
    8: (4)           54: (1,2,1,2)     90: (2,1,2,2)
   10: (2,2)         58: (1,1,2,2)     91: (2,1,2,1,1)
   16: (5)           64: (7)           93: (2,1,1,2,1)
   21: (2,2,1)       69: (4,2,1)       94: (2,1,1,1,2)
   22: (2,1,2)       70: (4,1,2)       98: (1,4,2)
   26: (1,2,2)       73: (3,3,1)      100: (1,3,3)
   32: (6)           74: (3,2,2)      104: (1,2,4)
   34: (4,2)         76: (3,1,3)      106: (1,2,2,2)
   36: (3,3)         81: (2,4,1)      107: (1,2,2,1,1)
   40: (2,4)         82: (2,3,2)      109: (1,2,1,2,1)
   42: (2,2,2)       84: (2,2,3)      110: (1,2,1,1,2)
   43: (2,2,1,1)     85: (2,2,2,1)    117: (1,1,2,2,1)
		

Crossrefs

The complement is A333227.
The version without singletons is A335236.
Ignoring repeated parts gives A335238.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!CoprimeQ@@stc[#]&]

A335240 Number of integer partitions of n that are not pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 6, 11, 16, 25, 34, 51, 69, 98, 134, 181, 238, 316, 410, 536, 691, 887, 1122, 1423, 1788, 2246, 2800, 3483, 4300, 5304, 6508, 7983, 9745, 11869, 14399, 17436, 21040, 25367, 30482, 36568, 43735, 52239, 62239, 74073, 87950, 104277, 123348
Offset: 0

Views

Author

Gus Wiseman, May 30 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
These are also partitions that are a singleton or whose product is strictly greater than the LCM of their parts.

Examples

			The a(2) = 1 through a(9) = 16 partitions:
  (2)  (3)  (4)   (5)    (6)     (7)      (8)       (9)
            (22)  (221)  (33)    (322)    (44)      (63)
                         (42)    (331)    (62)      (333)
                         (222)   (421)    (332)     (432)
                         (2211)  (2221)   (422)     (441)
                                 (22111)  (2222)    (522)
                                          (3221)    (621)
                                          (3311)    (3222)
                                          (4211)    (3321)
                                          (22211)   (4221)
                                          (221111)  (22221)
                                                    (32211)
                                                    (33111)
                                                    (42111)
                                                    (222111)
                                                    (2211111)
		

Crossrefs

The version for relatively prime instead of coprime is A018783.
The Heinz numbers of these partitions are the complement of A302696.
The complement is counted by A327516.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Numbers whose binary indices are pairwise coprime are A326675.
All of the following pertain to compositions in standard order (A066099):
- GCD is A326674.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Non-coprime compositions are A335239.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!CoprimeQ@@#&]],{n,0,30}]
Showing 1-10 of 13 results. Next