cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 145 results. Next

A000070 a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0

Views

Author

Keywords

Comments

Also the total number of all different integers in all partitions of n + 1. E.g., a(3) = 7 because the partitions of 4 comprise the sets {1},{1, 2},{2},{1, 3},{4} of different integers and their total number is 7. - Thomas Wieder, Apr 10 2004
With offset 1, also the number of 1's in all partitions of n. For example, 3 = 2+1 = 1+1+1, a(3) = (zero 1's) + (one 1's) + (three 1's), so a(3) = 4. - Naohiro Nomoto, Jan 09 2002. See the Riordan reference p. 184, last formula, first term, for a proof based on Fine's identity given in Riordan, p. 182 (20).
Also, number of partitions of n into parts when there are two kinds of parts of size one.
Also number of graphical forest partitions of 2n+2.
a(n) = count 2 for each partition of n and 1 for each decrement. E.g., the partitions of 4 are 4 (2), 31 (3), 22 (2), 211 (3) and 1111 (2). 2 + 3 + 2 + 3 + 2 = 12. This is related to the Ferrers representation. We can see that taking the Ferrers diagram for each partition of n and adding a new * to all available columns, we generate each partition of n+1, but with repeats (A058884). - Jon Perry, Feb 06 2004
Also the number of 1-transitions among all integer partitions of n. A 1-transition is the removal of a digit "1" from a partition containing at least one "1" and subsequent addition of that "1" to another digit in that partition. This other digit may be a "1" also, but all digits of equal amount are considered as undistinquishable (unlabeled). E.g., for n=6 one has the partition [1113] for which the following two 1-transitions are possible: [1113] --> [123] and [1113] --> [114]. The 1-transitions of n form a partial order (poset). For n=6 one has 12 1-transitions: [111111] --> [11112], [11112] --> [1113], [11112] --> [1122], [1113] --> [114], [1113] --> [123], [1122] --> [123], [1122] --> [222], [123] --> [33], [123] --> [24], [114] --> [15], [114] --> [24], [15] --> [6]. - Thomas Wieder, Mar 08 2005
Also number of partitions of 2n+1 where one of the parts is greater than n (also where there are more than n parts) and of 2n+2 where one of the parts is greater than n+1 (or with more than n+1 parts). - Henry Bottomley, Aug 01 2005
Equals left border of triangle A137633 - Gary W. Adamson, Jan 31 2008
Equals row sums of triangle A027293. - Gary W. Adamson, Oct 26 2008
Convolved with A010815 = [1,1,1,...]. n-th partial sum of A000041 convolved with A010815 = the binomial sequence starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
Equals A036469 convolved with A035363. - Gary W. Adamson, Jun 09 2009
a(A004526(n)) = A025065(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = if n <= 1 then A054225(1,n) else A054225(n,1). - Reinhard Zumkeller, Nov 30 2011
Also the total number of 1's among all hook-lengths in all partitions of n. E.g., a(4)=7 because hooks of the partitions of n = 4 comprise the multisets {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} and their total number of 1's is 7. - T. Amdeberhan, Jun 03 2012
With offset 1, a(n) is also the difference between the sum of largest and the sum of second largest elements in all partitions of n. More generally, the number of occurrences of k in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+1)st largest elements in all partitions of n. And more generally, the sum of the number of occurrences of k, k+1, k+2..k+m in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+m+1)st largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
a(0) = 1 and 2*a(n-1) >= a(n) for all n > 0. Hence a(n) is a complete sequence. - Frank M Jackson, Apr 08 2013
a(n) is the number of conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
a(n) is also the number of unlabeled subgraphs of the n-cycle C_n. For example, for n = 3, there are 3 unlabeled subgraphs of the triangle C_3 with 0 edges, 2 with 1 edge, 1 with 2 edges, and 1 with 3 edges (C_3 itself), so a(3) = 3 + 2 + 1 + 1 = 7. - John P. McSorley, Nov 21 2016
a(n) is also the number of partitions of 2n with all parts either even or equal to 1. Proof: the number of such partitions of 2n with exactly 2k 1's is p(n-k), for k = 0,..,n. Summing over k gives the formula. - Leonard Chastkofsky, Jul 24 2018
a(n) is the total number of polygamma functions that appear in the expansion of the (n+1)st derivative of x! with respect to x. More specifically, a(n) is the number of times the string "PolyGamma" appears in the expansion of D[x!, {x, n + 1}] in Mathematica. For example, D[x!, {x, 3 + 1}] = Gamma[1 + x] PolyGamma[0, 1 + x]^4 + 6 Gamma[1 + x] PolyGamma[0, 1 + x]^2 PolyGamma[1, 1 + x] + 3 Gamma[1 + x] PolyGamma[1, 1 + x]^2 + 4 Gamma[1 + x] PolyGamma[0, 1 + x] PolyGamma[2, 1 + x] + Gamma[1 + x] PolyGamma[3, 1 + x], and we see that the string "PolyGamma" appears a total of a(3) = 7 times in this expansion. - John M. Campbell, Aug 11 2018
With offset 1, also the number of integer partitions of 2n that do not comprise the multiset of vertex-degrees of any multigraph (i.e., non-multigraphical partitions); see A209816 for multigraphical partitions. - Gus Wiseman, Oct 26 2018
Also a(n) is the number of partitions of 2n+1 with exactly one odd part.
Delete the odd part 2k+1, k=0, ..., n, to get a partition of 2n-2k into even parts. There are as many unrestricted partitions of n-k; now sum those numbers from 0 to n to get a(n). - George Beck, Jul 22 2019
In the Young's lattice, a(n) is the number of branches that connect the (n-1)-th layer to the n-th layer. - Shouvik Datta, Sep 19 2021
a(n) is the number of multiset partitions of the multiset {r^n, s^1}, equivalently, factorization patterns of any number m=p^n*q^1 where p and q are primes. - Joerg Arndt, Jan 01 2024
a(n) is the number of positive integers whose divisors are the parts of the partitions of n + 1. - Omar E. Pol, Nov 07 2024

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
.                         Number
Partitions of 6           of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 =                     19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
  (2)  (4)   (6)    (8)     (A)      (C)
       (31)  (42)   (53)    (64)     (75)
             (51)   (62)    (73)     (84)
             (411)  (71)    (82)     (93)
                    (521)   (91)     (A2)
                    (611)   (622)    (B1)
                    (5111)  (631)    (732)
                            (721)    (741)
                            (811)    (822)
                            (6211)   (831)
                            (7111)   (921)
                            (61111)  (A11)
                                     (7221)
                                     (7311)
                                     (8211)
                                     (9111)
                                     (72111)
                                     (81111)
                                     (711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
  (11)  (211)   (2211)    (22211)     (222211)      (2222211)
        (1111)  (3111)    (32111)     (322111)      (3222111)
                (21111)   (41111)     (331111)      (3321111)
                (111111)  (221111)    (421111)      (4221111)
                          (311111)    (511111)      (4311111)
                          (2111111)   (2221111)     (5211111)
                          (11111111)  (3211111)     (6111111)
                                      (4111111)     (22221111)
                                      (22111111)    (32211111)
                                      (31111111)    (33111111)
                                      (211111111)   (42111111)
                                      (1111111111)  (51111111)
                                                    (222111111)
                                                    (321111111)
                                                    (411111111)
                                                    (2211111111)
                                                    (3111111111)
                                                    (21111111111)
                                                    (111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
   1:  {{1, 1, 1, 1, 1, 2}}
   2:  {{1, 1, 1, 1, 1}, {2}}
   3:  {{1, 1, 1, 1, 2}, {1}}
   4:  {{1, 1, 1, 1}, {1, 2}}
   5:  {{1, 1, 1, 1}, {1}, {2}}
   6:  {{1, 1, 1, 2}, {1, 1}}
   7:  {{1, 1, 1, 2}, {1}, {1}}
   8:  {{1, 1, 1}, {1, 1, 2}}
   9:  {{1, 1, 1}, {1, 1}, {2}}
  10:  {{1, 1, 1}, {1, 2}, {1}}
  11:  {{1, 1, 1}, {1}, {1}, {2}}
  12:  {{1, 1, 2}, {1, 1}, {1}}
  13:  {{1, 1, 2}, {1}, {1}, {1}}
  14:  {{1, 1}, {1, 1}, {1, 2}}
  15:  {{1, 1}, {1, 1}, {1}, {2}}
  16:  {{1, 1}, {1, 2}, {1}, {1}}
  17:  {{1, 1}, {1}, {1}, {1}, {2}}
  18:  {{1, 2}, {1}, {1}, {1}, {1}}
  19:  {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
		

References

  • H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.

Crossrefs

A diagonal of A066633.
Also second column of A126442. - George Beck, May 07 2011
Row sums of triangle A092905.
Also row sums of triangle A261555. - Omar E. Pol, Sep 14 2016
Also row sums of triangle A278427. - John P. McSorley, Nov 25 2016
Column k=2 of A292508.

Programs

  • GAP
    List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
    
  • Haskell
    a000070 = p a028310_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Maple
    with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
    Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
    Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
    
  • PARI
    x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
    
  • PARI
    a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
    
  • Python
    from itertools import accumulate
    def A000070iter(n):
        L = [0]*n; L[0] = 1
        def numpart(n):
            S = 0; J = n-1; k = 2
            while 0 <= J:
                T = L[J]
                S = S+T if (k//2)%2 else S-T
                J -= k  if (k)%2 else k//2
                k += 1
            return S
        for j in range(1, n): L[j] = numpart(j)
        return accumulate(L)
    print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
    
  • Python
    # Using function A365676Row. Compare also A365675.
    from itertools import accumulate
    def A000070List(size: int) -> list[int]:
        return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
    print(A000070List(45))  # Peter Luschny, Sep 16 2023
  • Sage
    def A000070_list(leng):
        p = [number_of_partitions(n) for n in range(leng)]
        return [add(p[:k+1]) for k in range(leng)]
    A000070_list(45) # Peter Luschny, Sep 15 2014
    

Formula

Euler transform of [ 2, 1, 1, 1, 1, 1, 1, ...].
log(a(n)) ~ -3.3959 + 2.44613*sqrt(n). - Robert G. Wilson v, Jan 11 2002
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)+1)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
G.f.: (1/(1 - x))*Product_{m >= 1} 1/(1 - x^m).
a(n) seems to have the same parity as A027349(n+1). Comment from James Sellers, Mar 08 2006: that is true.
a(n) = A000041(2n+1) - A110618(2n+1) = A000041(2n+2) - A110618(2n+2). - Henry Bottomley, Aug 01 2005
Row sums of triangle A133735. - Gary W. Adamson, Sep 22 2007
a(n) = A092269(n+1) - A195820(n+1). - Omar E. Pol, Oct 20 2011
a(n) = A181187(n+1,1) - A181187(n+1,2). - Omar E. Pol, Oct 25 2012
From Peter Bala, Dec 23 2013: (Start)
Gupta gives the asymptotic result a(n-1) ~ sqrt(6/Pi^2)* sqrt(n)*p(n), where p(n) is the partition function A000041(n).
Let P(2,n) denote the set of partitions of n into parts k >= 2.
a(n-2) = Sum_{parts k in all partitions in P(2,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, leads to the asymptotic result
a(n-2) ~ (6/Pi^2)*n*(p(n) - p(n-1)) = (6/Pi^2)*A138880(n) as n -> infinity. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n)) + (73*Pi^2 - 1584)/(6912*n)). - Vaclav Kotesovec, Oct 26 2016
a(n) = A024786(n+2) + A024786(n+1). - Vaclav Kotesovec, Nov 05 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(n) = A025065(2n). - Gus Wiseman, Oct 26 2018
a(n - 1) = A000041(2n) - A209816(n). - Gus Wiseman, Oct 26 2018

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A239455 Number of Look-and-Say partitions of n; see Comments.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0

Views

Author

Keywords

Comments

Suppose that p = x(1) >= x(2) >= ... >= x(k) is a partition of n. Let y(1) > y(2) > ... > y(h) be the distinct parts of p, and let m(i) be the multiplicity of y(i) for 1 <= i <= h. Then we can "look" at p as "m(1) y(1)'s and m(2) y(2)'s and ... m(h) y(h)'s". Reversing the m's and y's, we can then "say" the Look-and-Say partition of p, denoted by LS(p). The name "Look-and-Say" follows the example of Look-and-Say integer sequences (e.g., A005150). As p ranges through the partitions of n, LS(p) ranges through all the Look-and-Say partitions of n. The number of these is A239455(n).
The Look-and-Say array is distinct from the Wilf array, described at A098859; for example, the number of Look-and-Say partitions of 9 is A239455(9) = 16, whereas the number of Wilf partitions of 9 is A098859(9) = 15. The Look-and-Say partition of 9 which is not a Wilf partition of 9 is [2,2,2,1,1,1].
Conjecture: a partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are all distinct, so y is counted under a(9). - Gus Wiseman, Aug 11 2025
Also the number of integer partitions y of n such that there is a pairwise disjoint way to choose a strict integer partition of each multiplicity (or run-length) of y. - Gus Wiseman, Aug 11 2025

Examples

			The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
		

Crossrefs

These include all Wilf partitions, counted by A098859, ranked by A130091.
These partitions are listed by A239454 in graded reverse-lex order.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351204, complement A351203.
The complement is counted by A351293, apparently ranked by A351295, conjugate A381433.
These partitions appear to be ranked by A351294, conjugate A381432.
The non-Wilf case is counted by A351592.
For normal multisets we appear to have A386580, complement A386581.
A000110 counts set partitions, ordered A000670.
A000569 = graphical partitions, complement A339617.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
A386583 counts separable partitions, sums A325534, ranks A335433.
A386584 counts inseparable partitions, sums A325535, ranks A335448.
A386585 counts separable type partitions, sums A336106, ranks A335127.
A386586 counts inseparable type partitions, sums A386638 or A025065, ranks A335126.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018, ranked by A044813.
- A329739 = compositions, for runs A351013, ranked by A351596.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
    Flatten[t](*A239454,sequence*)
    Map[Length[LS[#]] &, Range[25]](*A239455*)
    (* Peter J. C. Moses, Mar 18 2014 *)
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)

A000569 Number of graphical partitions of 2n.

Original entry on oeis.org

1, 2, 5, 9, 17, 31, 54, 90, 151, 244, 387, 607, 933, 1420, 2136, 3173, 4657, 6799, 9803, 14048, 19956, 28179, 39467, 54996, 76104, 104802, 143481, 195485, 264941, 357635, 480408, 642723, 856398, 1136715, 1503172, 1980785
Offset: 1

Views

Author

Keywords

Comments

A partition of n is a sequence p_1, ..., p_k for some k with p_1 >= p_2 >= ... >= p_k and p_1+...+p_k=n. A partition is graphical if it is the degree sequence of a simple graph (this requires that n be even). Some authors set a(0)=1 by convention.

Examples

			a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 17 graphical partitions:
  (11)  (211)   (222)     (2222)      (3322)
        (1111)  (2211)    (3221)      (22222)
                (3111)    (22211)     (32221)
                (21111)   (32111)     (33211)
                (111111)  (41111)     (42211)
                          (221111)    (222211)
                          (311111)    (322111)
                          (2111111)   (331111)
                          (11111111)  (421111)
                                      (511111)
                                      (2221111)
                                      (3211111)
                                      (4111111)
                                      (22111111)
                                      (31111111)
                                      (211111111)
                                      (1111111111)
(End)
		

Crossrefs

Programs

  • Mathematica
    << MathWorld`Graphs`
    Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
    (* second program *)
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)

A364272 Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A316402 at a(16) = 11 due to (7,5,3,1).

Examples

			The a(6) = 1 through a(16) = 11 partitions (A=10):
  (321) . (431) . (532)  (5321) (642)  (5431) (743)  (6432)  (853)
                  (541)         (651)  (6421) (752)  (6531)  (862)
                  (4321)        (5421) (7321) (761)  (7431)  (871)
                                (6321)        (5432) (7521)  (6532)
                                              (6431) (9321)  (6541)
                                              (6521) (54321) (7432)
                                              (7421)         (7621)
                                              (8321)         (8431)
                                                             (8521)
                                                             (A321)
                                                             (64321)
		

Crossrefs

The non-strict complement is A237667, ranks A364531.
The non-strict version is A237668, ranks A364532.
The complement in strict partitions is A364349, binary A364533.
The linear combination-free version is A364350.
For subsets of {1..n} we have A364534, complement A151897.
The binary version is A364670, allowing re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A236912 counts binary sum-free partitions, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,30}]

A363225 Number of integer partitions of n containing three parts (a,b,c) (repeats allowed) such that a + b = c. A variation of sum-full partitions.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 29, 43, 58, 81, 109, 148, 195, 263, 339, 445, 574, 744, 942, 1209, 1515, 1923, 2399, 3005, 3721, 4629, 5693, 7024, 8589, 10530, 12804, 15596, 18876, 22870, 27538, 33204, 39816, 47766, 57061, 68161, 81099, 96510, 114434, 135634
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Comments

Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (432)
                       (2211)   (3211)    (521)      (621)
                       (21111)  (22111)   (3221)     (3321)
                                (211111)  (4211)     (4221)
                                          (22211)    (4311)
                                          (32111)    (5211)
                                          (221111)   (22221)
                                          (2111111)  (32211)
                                                     (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For subsets of {1..n} we have A093971, A088809 without re-using parts.
The complement for subsets is A007865, A085489 without re-using parts.
Without re-using parts we have A237113, complement A236912.
For sums of any length > 1 (without re-usable parts) we have A237668, complement A237667.
The strict case is A363226.
The complement is counted by A364345, strict A364346.
These partitions have ranks A364348, complement A364347.
The strict linear combination-free version is A364350.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(48) from Chai Wah Wu, Sep 21 2023

A209816 Number of partitions of 2n in which every part is

Original entry on oeis.org

1, 3, 7, 15, 30, 58, 105, 186, 318, 530, 863, 1380, 2164, 3345, 5096, 7665, 11395, 16765, 24418, 35251, 50460, 71669, 101050, 141510, 196888, 272293, 374423, 512081, 696760, 943442, 1271527, 1706159, 2279700, 3033772, 4021695, 5311627, 6990367, 9168321
Offset: 1

Views

Author

Clark Kimberling, Mar 13 2012

Keywords

Comments

Also, the number of partitions of 3n in which n is the maximal part.
Also, the number of partitions of 3n into n parts. - Seiichi Manyama, May 07 2018
Also the number of multigraphical partitions of 2n, i.e., integer partitions that comprise the multiset of vertex-degrees of some multigraph. - Gus Wiseman, Oct 24 2018
Also number of partitions of 2n with at most n parts. Conjugate partitions map one to one to partitions of 2*n with each part <= n. - Wolfdieter Lang, May 21 2019

Examples

			The 7 partitions of 6 with parts <4 are as follows:
3+3, 3+2+1, 3+1+1+1
2+2+2, 2+2+1+1, 2+1+1+1+1
1+1+1+1+1+1.
Matching partitions of 2 into rationals as described:
1 + 1
1 + 3/3 + 1/3
1 + 1/3 + 1/3 + 1/3
2/3 + 2/3 + 2/3
2/3 + 2/3 + 1/3 + 1/3
2/3 + 1/3 + 1/3 + 1/3 + 1/3
1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3.
From _Seiichi Manyama_, May 07 2018: (Start)
n | Partitions of 3n into n parts
--+-------------------------------------------------
1 | 3;
2 | 5+1, 4+2, 3+3;
3 | 7+1+1, 6+2+1, 5+3+1, 5+2+2, 4+4+1, 4+3+2, 3+3+3; (End)
From _Gus Wiseman_, Oct 24 2018: (Start)
The a(1) = 1 through a(4) = 15 partitions:
  (11)  (22)    (33)      (44)
        (211)   (222)     (332)
        (1111)  (321)     (422)
                (2211)    (431)
                (3111)    (2222)
                (21111)   (3221)
                (111111)  (3311)
                          (4211)
                          (22211)
                          (32111)
                          (41111)
                          (221111)
                          (311111)
                          (2111111)
                          (11111111)
(End)
		

Crossrefs

Programs

  • Haskell
    a209816 n = p [1..n] (2*n) where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 14 2013
  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012
  • Mathematica
    f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n &]]; Table[f[n], {n, 1, 30}] (* A209816 *)
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,2*n}],{n,1,20}] (* Vaclav Kotesovec, May 25 2015 *)
    Table[Length@IntegerPartitions[3n, {n}], {n, 25}] (* Vladimir Reshetnikov, Jul 24 2016 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = A000041(2*n)-A000070(n-1). - Matthew Vandermast, Jul 16 2012
a(n) = Sum_{k=1..n} A008284(2*n, k) = A000041(2*n) - A000070(n-1), for n >= 1. - Wolfdieter Lang, May 21 2019

Extensions

More terms from Alois P. Heinz, Jul 09 2012

A096373 Number of partitions of n such that the least part occurs exactly twice.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 3, 6, 5, 11, 11, 17, 20, 30, 33, 49, 56, 77, 92, 122, 143, 190, 225, 287, 344, 435, 516, 648, 770, 951, 1134, 1388, 1646, 2007, 2376, 2868, 3395, 4078, 4807, 5749, 6764, 8042, 9449, 11187, 13101, 15463, 18070, 21236, 24772, 29021, 33764
Offset: 1

Views

Author

Vladeta Jovovic, Jul 19 2004

Keywords

Comments

Also number of partitions of n such that the difference between the two largest distinct parts is 2 (it is assumed that 0 is a part in each partition). Example: a(6)=3 because we have [4,2], [3,1,1,1] and [2,2,2]. - Emeric Deutsch, Apr 08 2006
Number of partitions p of n+2 such that min(p) + (number of parts of p) is a part of p. - Clark Kimberling, Feb 27 2014
Number of partitions of n+1 such that the two smallest parts differ by one. - Giovanni Resta, Mar 07 2014
Also the number of integer partitions of n with an even number of parts that cannot be grouped into pairs of distinct parts. These are also integer partitions of n with an even number of parts whose greatest multiplicity is greater than half the number of parts. - Gus Wiseman, Oct 26 2018

Examples

			a(6)=3 because we have [4,1,1], [3,3] and [2,2,1,1].
G.f. = x^2 + 2*x^4 + x^5 + 3*x^6 + 3*x^7 + 6*x^8 + 5*x^9 + 11*x^10 + 11*x^11 + ...
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(2) = 1 through a(10) = 11 partitions where the least part occurs exactly twice (zero terms not shown):
  (11)  (22)   (311)  (33)    (322)   (44)     (522)    (55)
        (211)         (411)   (511)   (422)    (711)    (433)
                      (2211)  (3211)  (611)    (4311)   (622)
                                      (3311)   (5211)   (811)
                                      (4211)   (32211)  (3322)
                                      (22211)           (4411)
                                                        (5311)
                                                        (6211)
                                                        (33211)
                                                        (42211)
                                                        (222211)
The a(2) = 1 through a(10) = 11 partitions that cannot be grouped into pairs of distinct parts (zero terms not shown):
  (11) (22)   (2111) (33)     (2221)   (44)       (3222)     (55)
       (1111)        (3111)   (4111)   (2222)     (6111)     (3331)
                     (111111) (211111) (5111)     (321111)   (4222)
                                       (221111)   (411111)   (7111)
                                       (311111)   (21111111) (222211)
                                       (11111111)            (331111)
                                                             (421111)
                                                             (511111)
                                                             (22111111)
                                                             (31111111)
                                                             (1111111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(2*k)/product(1-x^j,j=k+1..80),k=1..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 08 2006
  • Mathematica
    (* do first *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{p = Partitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 3]; If[ q[[1]] != q[[3]] && q[[2]] == q[[3]], c++ ]; k++ ]; c]; Table[ f[n], {n, 51}] (* Robert G. Wilson v, Jul 23 2004 *)
    Table[Count[IntegerPartitions[n+2], p_ /; MemberQ[p, Length[p] + Min[p]]], {n, 50}] (* Clark Kimberling, Feb 27 2014 *)
    p[n_, m_] := If[m == n, 1, If[m > n, 0, p[n, m] = Sum[p[n-m, k], {k, m, n}]]];
    a[n_] := Sum[p[n+1-k, k+1], {k, n/2}]; Array[a, 100] (* Giovanni Resta, Mar 07 2014 *)
  • PARI
    {q=sum(m=1,100,x^(2*m)/prod(i=m+1,100,1-x^i,1+O(x^60)),1+O(x^60));for(n=1,51,print1(polcoeff(q,n),","))} \\ Klaus Brockhaus, Jul 21 2004
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( ( 1 - (1 - x - x^2) / eta(x + x^4 * O(x^n)) ) * (1 - x) / x^3, n))} /* Michael Somos, Feb 28 2014 */

Formula

G.f.: Sum_{m>0} (x^(2*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m)/Product_{i>m} (1-x^i)).
G.f.: Sum_{k>=1} (x^(2*k-2)*(1-x^(k-1))/Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Apr 08 2006
a(n) = -p(n+3)+2*p(n+2)-p(n), p(n)=A000041(n). - Mircea Merca, Jul 10 2013
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (12*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Jun 02 2018

Extensions

Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 21 2004

A320924 Heinz numbers of multigraphical partitions.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 27, 30, 36, 40, 48, 49, 63, 64, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 144, 147, 154, 160, 165, 169, 175, 189, 192, 196, 198, 210, 220, 225, 243, 250, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
Also Heinz numbers of integer partitions of even numbers whose greatest part is less than or equal to half the sum of parts, i.e., numbers n whose sum of prime indices A056239(n) is even and at least twice the greatest prime index A061395(n). - Gus Wiseman, May 23 2021

Examples

			The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111).
From _Gus Wiseman_, May 23 2021: (Start)
The sequence of terms together with their prime indices and a multigraph realizing each begins:
    1:      () | {}
    4:    (11) | {{1,2}}
    9:    (22) | {{1,2},{1,2}}
   12:   (112) | {{1,3},{2,3}}
   16:  (1111) | {{1,2},{3,4}}
   25:    (33) | {{1,2},{1,2},{1,2}}
   27:   (222) | {{1,2},{1,3},{2,3}}
   30:   (123) | {{1,3},{2,3},{2,3}}
   36:  (1122) | {{1,2},{3,4},{3,4}}
   40:  (1113) | {{1,4},{2,4},{3,4}}
   48: (11112) | {{1,2},{3,5},{4,5}}
   49:    (44) | {{1,2},{1,2},{1,2},{1,2}}
   63:   (224) | {{1,3},{1,3},{2,3},{2,3}}
(End)
		

Crossrefs

These partitions are counted by A209816.
The case with odd weights is A322109.
The conjugate case of equality is A340387.
The conjugate version with odd weights allowed is A344291.
The conjugate opposite version is A344292.
The opposite version with odd weights allowed is A344296.
The conjugate version is A344413.
The conjugate opposite version with odd weights allowed is A344414.
The case of equality is A344415.
The opposite version is A344416.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A056239 adds up prime indices, row sums of A112798.
A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&]

Formula

Members m of A300061 such that A061395(m) <= A056239(m)/2. - Gus Wiseman, May 23 2021

A364345 Number of integer partitions of n without any three parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 27, 34, 43, 54, 67, 83, 102, 122, 151, 182, 218, 258, 313, 366, 443, 513, 611, 713, 844, 975, 1149, 1325, 1554, 1780, 2079, 2381, 2761, 3145, 3647, 4134, 4767, 5408, 6200, 7014, 8035, 9048, 10320, 11639, 13207, 14836, 16850
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For subsets of {1..n} instead of partitions we have A007865 (sum-free sets), differences A288728.
Without re-using parts we have A236912, complement A237113.
Allowing the sum of any number of parts gives A237667 (cf. A108917).
The complement is counted by A363225, strict A363226, for subsets A093971.
The strict case is A364346.
These partitions have ranks A364347, complement A364348.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Union[#],3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,30}]
Showing 1-10 of 145 results. Next