cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A134956 Number of hyperforests with n labeled vertices: analog of A134954 when edges of size 1 are allowed (with no two equal edges).

Original entry on oeis.org

1, 2, 8, 64, 880, 17984, 495296, 17255424, 728771584, 36208782336, 2069977144320, 133869415030784, 9664049202221056, 770400218809384960, 67219977066339008512, 6372035504466437079040, 652103070162164448952320, 71656927837957783339925504
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Examples

			From _Gus Wiseman_, May 21 2018: (Start)
The a(2) = 8 hyperforests are the following:
  {{1},{2},{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1,2}}
  {{1},{2}}
  {{1}}
  {{2}}
  {}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    with(combinat): p:= proc(n) option remember; add(stirling2(n-1, i) *n^(i-1), i=0..n-1) end: g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: a:= n-> `if`(n=0, 1, 2^n * g(n)): seq(a(n), n=0..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    p[n_] := p[n] = Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; g[n_] := g[n] = p[n] + Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; a[n_] := If[n == 0, 1, 2^n* g[n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)

Formula

Equals 2^n*A134954(n).
a(n) = Sum of n!prod_{k=1}^n\{ frac{ A134958(k)^{c_k} }{ k!^{c_k} c_k! } } over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008

A030019 Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

Original entry on oeis.org

1, 1, 1, 4, 29, 311, 4447, 79745, 1722681, 43578820, 1264185051, 41381702275, 1509114454597, 60681141052273, 2667370764248023, 127258109992533616, 6549338612837162225, 361680134713529977507, 21333858798449021030515, 1338681172839439064846881
Offset: 0

Views

Author

David Warme (warme(AT)s3i.com)

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n labeled nodes, i.e. connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134954 for hyperforests.
Also number of labeled connected graphs where every block is a complete graph (cf. A035053).
Let H = (V,E) be the complete hypergraph on N labeled vertices (all edges having cardinality 2 or greater). Let e in E and K = |e|. Then the number of distinct spanning trees of H that contain edge e is g(N,K) = K * E[X_N^{N-K}] / N and the K=1 case gives this sequence. Clearly there is some deep structural connection between spanning trees in hypergraphs and Poisson moments.

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 18}](* Jean-François Alcover, Sep 12 2012, from 2nd formula *)
  • PARI
    {a(n)=if(n==0,1,(n-1)!*polcoeff(1-sum(k=0, n-2, a(k+1)*x^k/k!*exp(-(k+1)*(exp(x+O(x^n))-1))), n-1))} /* Paul D. Hanna */
    
  • PARI
    /* E.g.f. of sequence shifted left one place: */
    {a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(m*x*A+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} /* Paul D. Hanna */

Formula

a(n) = A035051(n)/n for n > 0.
a(n) = Sum_{i=0...n-1} Stirling2(n-1, i) n^(i-1), n >= 1. (Warme, Corollary 3.15.1, p. 59)
a(n) = E[X_n^{n-1}] / n, n >= 1, where X_n is a Poisson random variable with mean n.
1 = Sum_{n>=0} a(n+1) * x^n/n! * exp( -(n+1)*(exp(x)-1) ). - Paul D. Hanna, Jun 11 2011
E.g.f. satisfies: A(x) = Sum_{n>=0} exp(n*x*A(x)-1)/n! = Sum_{n>=0} a(n+1)*x^n/n!. - Paul D. Hanna, Sep 25 2011
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^(k-1)*k^(n-1)/k!. Cf. A052888. For a refinement of this sequence see A210587. - Peter Bala, Apr 05 2012
a(n) ~ n^(n-2) / (sqrt(1+LambertW(1)) * (LambertW(1))^(n-1) * exp((2-1/LambertW(1))*n)). - Vaclav Kotesovec, Jul 26 2014

Extensions

More terms, formula and comment from Christian G. Bower Dec 15 1999

A304118 Number of z-blobs with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.
If n is squarefree with k prime factors, then a(n) = A275307(k).

Examples

			The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.
        (60): {{1,1,2,3}}
     (12,30): {{1,1,2},{1,2,3}}
     (20,30): {{1,1,3},{1,2,3}}
   (6,15,20): {{1,2},{2,3},{1,1,3}}
  (10,12,15): {{1,3},{1,1,2},{2,3}}
  (12,15,20): {{1,1,2},{2,3},{1,1,3}}
  (12,20,30): {{1,1,2},{1,1,3},{1,2,3}}
The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.
       (120): {{1,1,1,2,3}}
     (24,30): {{1,1,1,2},{1,2,3}}
     (24,60): {{1,1,1,2},{1,1,2,3}}
     (30,40): {{1,2,3},{1,1,1,3}}
     (40,60): {{1,1,1,3},{1,1,2,3}}
   (6,15,40): {{1,2},{2,3},{1,1,1,3}}
  (10,15,24): {{1,3},{2,3},{1,1,1,2}}
  (12,15,40): {{1,1,2},{2,3},{1,1,1,3}}
  (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}
  (15,20,24): {{2,3},{1,1,3},{1,1,1,2}}
  (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}
  (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}
  (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}
  (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]];
    zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]];
    zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}];
    zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}]

A134955 Number of "hyperforests" on n unlabeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 50, 128, 351, 1009, 3035, 9464, 30479, 100712, 340072, 1169296, 4082243, 14438577, 51643698, 186530851, 679530937, 2494433346, 9219028889, 34280914106, 128179985474, 481694091291, 1818516190252, 6894350122452
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Comments

A hyperforest is an antichain of finite nonempty sets (edges) whose connected components are hypertrees. It is spanning if all vertices are covered by some edge. However, it is common to represent uncovered vertices as singleton edges. For example, {{1,2},{1,4}} and {{3},{1,2},{1,4}} may represent the same hyperforest, the former being free of singletons (see example 2) and the latter being spanning (see example 1). This is different from a hyperforest with singleton edges allowed, which is one whose non-singleton edges only are required to form an antichain. For example, {{1},{2},{1,3},{2,3}} is a hyperforest with singleton edges allowed. - Gus Wiseman, May 22 2018
Equivalently, number of block graphs on n nodes, that is, graphs where every block is a complete graph. These graphs can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(4) = 9 spanning hyperforests are the following:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{1,2},{3,4}}
  {{1,4},{2,3,4}}
  {{1},{2},{3,4}}
  {{1},{2,4},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{4}}
Non-isomorphic representatives of the a(4) = 9 hyperforests spanning up to 4 vertices without singleton edges are the following:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): aa:= proc(n) option remember; B(n)+C(n) -add(B(k)*C(n-k), k=0..n) end: a:= etr(aa): seq(a(n), n=0..27); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[B]; c = etr[b]; B[n_] := If[n == 0, 0, c[n-1]]; CC = etr[B]; aa[n_] := aa[n] = B[n]+CC[n]-Sum[B[k]*CC[n-k], {k, 0, n}]; a = etr[aa]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz*)
  • PARI
    \\ here b is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, May 22 2018

Formula

Euler transform of A035053. - N. J. A. Sloane, Jan 30 2008
a(n) = Sum of prod_{k=1}^n\,{A035053(k) + c_k -1 /choose c_k} over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.36483930544... . - Vaclav Kotesovec, Jul 26 2014

A144959 A134955(n) - A134955(n-1). Number of hyperforests spanning n unlabeled nodes without isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 30, 78, 223, 658, 2026, 6429, 21015, 70233, 239360, 829224, 2912947, 10356334, 37205121, 134887153, 493000086, 1814902409, 6724595543, 25061885217, 93899071368, 353514105817, 1336822098961, 5075833932200
Offset: 0

Views

Author

Washington Bomfim, Sep 27 2008

Keywords

Comments

a(n) is the number of hyperforests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A134955(n-1) counts the hyperforests of order n with one or more isolated nodes.

Examples

			From _Gus Wiseman_, May 21 2018: (Start)
Non-isomorphic representatives of the a(5) = 11 hyperforests are the following:
  {{1,2,3,4,5}}
  {{1,2},{3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,2},{3,5},{4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

Crossrefs

Cf. A030019, A035053, A048143, A054921, A134954, A134955, A134957, A144958 (unlabeled forests without isolated vertices), A144959, A304716, A304717, A304867, A304911.

Programs

  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b];
    b[0] = 0; b[n_] := b[n] = etr[etr[b]][n-1];
    c[1] = 0; c[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}];
    a = etr[c];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 12 2018, after Alois P. Heinz's code for A035053 *)
  • PARI
    \\ here b is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); concat([1], EulerT(concat([0], Vec(Ser(EulerT(u))*(1-x*Ser(u))-1))))} \\ Andrew Howroyd, May 22 2018

Formula

Euler transform of b(1) = 0, b(n > 1) = A035053(n). - Gus Wiseman, May 21 2018

A304912 Number of non-isomorphic spanning hyperforests of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 29, 56, 97, 186, 337, 657, 1238, 2442, 4768, 9569, 19174, 39151, 80154, 166211, 346239, 727853, 1537611, 3270710, 6989669, 15018389, 32405378, 70230238, 152772075, 333552711, 730632928, 1605459844, 3537861659, 7817447580, 17317397837
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A spanning hyperforest is an antichain of finite nonempty sets, which cover a set of n vertices, whose connected components are hypertrees (see A304867). The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A134957).

Examples

			The a(6) = 18 spanning hyperforests are the following:
  {{1,2,3,4,5,6}}
  {{1},{2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1},{2},{3,4,5,6}}
  {{1},{2,3},{4,5,6}}
  {{1},{2,5},{3,4,5}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{4,5,6}}
  {{1},{2},{3,4},{5,6}}
  {{1},{2},{3,5},{4,5}}
  {{1},{2},{3},{4},{5,6}}
  {{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
    c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
    seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]& // Rest // EulerT // Prepend[#, 1]&];
    seq[36] (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    c(n)={my(v=[1]); for(i=2, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
    seq(n)={my(u=c(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*(Ser(u) - 1)+ O(x*x^n))))} \\ Andrew Howroyd, Aug 29 2018

Formula

Euler transform of A304867.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018

A321155 Regular triangle where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with density -1 <= k < n-2.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 6, 6, 4, 1, 10, 14, 11, 4, 1, 22, 38, 38, 20, 6, 1, 42, 94, 111, 72, 28, 6, 1, 94, 250, 348, 278, 138, 42, 8, 1, 203, 648, 1044, 992, 596, 226, 56, 8, 1, 470, 1728, 3192, 3538, 2536, 1192, 370, 76, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

The density of a multiset partition of weight n with e parts and v vertices is n - e - v. The weight of a multiset partition is the sum of sizes of its parts.

Examples

			Triangle begins:
    1
    2    1
    3    2    1
    6    6    4    1
   10   14   11    4    1
   22   38   38   20    6    1
   42   94  111   72   28    6    1
   94  250  348  278  138   42    8    1
  203  648 1044  992  596  226   56    8    1
  470 1728 3192 3538 2536 1192  370   76   10    1
Non-isomorphic representatives of the connected multiset partitions counted in row 5:
{1,2,3,4,5}         {1,2,3,4,4}       {1,2,2,3,3}     {1,1,2,2,2}   {1,1,1,1,1}
{1,4},{2,3,4}       {1,2},{2,3,3}     {1,2,3,3,3}     {1,2,2,2,2}
{4},{1,2,3,4}       {1,3},{2,3,3}     {1,1},{1,2,2}   {1},{1,1,1,1}
{2},{1,3},{2,3}     {2},{1,2,3,3}     {1},{1,2,2,2}   {1,1},{1,1,1}
{2},{3},{1,2,3}     {2,3},{1,2,3}     {1,2},{1,2,2}
{3},{1,3},{2,3}     {3},{1,2,3,3}     {1,2},{2,2,2}
{3},{3},{1,2,3}     {3,3},{1,2,3}     {2},{1,1,2,2}
{1},{2},{2},{1,2}   {1},{1},{1,2,2}   {2},{1,2,2,2}
{2},{2},{2},{1,2}   {1},{1,2},{2,2}   {2,2},{1,2,2}
{1},{1},{1},{1},{1} {1},{2},{1,2,2}   {1},{1},{1,1,1}
                    {2},{1,2},{1,2}   {1},{1,1},{1,1}
                    {2},{1,2},{2,2}
                    {2},{2},{1,2,2}
                    {1},{1},{1},{1,1}
		

Crossrefs

First column is A125702. Row sums are A007718.

A303838 Number of z-forests with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1.
This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A134954(k).
Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49.

Examples

			The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
       (60): {{1,1,2,3}}
     (3,20): {{2},{1,1,3}}
     (4,15): {{1,1},{2,3}}
     (4,30): {{1,1},{1,2,3}}
     (5,12): {{3},{1,1,2}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
    (3,4,5): {{2},{1,1},{3}}
   (3,4,10): {{2},{1,1},{1,3}}
    (4,5,6): {{1,1},{3},{1,2}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]

A304911 Number of labeled hyperforests spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 4, 32, 351, 5057, 90756, 1956971, 49366904, 1427680932, 46590895869, 1694163054597, 67938488277050, 2978980898086377, 141801848209013050, 7282651452378019772, 401410357608479625207, 23635996827115264290005
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Examples

			The a(3) = 4 hyperforests are {{1,2,3}}, {{1,3},{2,3}}, {{1,2},{2,3}}, {{1,2},{1,3}}.
		

Crossrefs

Formula

E.g.f.: exp(A030019(x) - x - 1) where A030019(x) is the e.g.f. of A030019.

A317672 Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        2       3
       44      24      16
     4983     940     300     125
  7565342  154770   18000    4320    1296
		

Crossrefs

Row sums are A048143. First column is A275307. Last column is A030019.

Programs

  • Mathematica
    blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]
Showing 1-10 of 39 results. Next