cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A030019 Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

Original entry on oeis.org

1, 1, 1, 4, 29, 311, 4447, 79745, 1722681, 43578820, 1264185051, 41381702275, 1509114454597, 60681141052273, 2667370764248023, 127258109992533616, 6549338612837162225, 361680134713529977507, 21333858798449021030515, 1338681172839439064846881
Offset: 0

Views

Author

David Warme (warme(AT)s3i.com)

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n labeled nodes, i.e. connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134954 for hyperforests.
Also number of labeled connected graphs where every block is a complete graph (cf. A035053).
Let H = (V,E) be the complete hypergraph on N labeled vertices (all edges having cardinality 2 or greater). Let e in E and K = |e|. Then the number of distinct spanning trees of H that contain edge e is g(N,K) = K * E[X_N^{N-K}] / N and the K=1 case gives this sequence. Clearly there is some deep structural connection between spanning trees in hypergraphs and Poisson moments.

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 18}](* Jean-François Alcover, Sep 12 2012, from 2nd formula *)
  • PARI
    {a(n)=if(n==0,1,(n-1)!*polcoeff(1-sum(k=0, n-2, a(k+1)*x^k/k!*exp(-(k+1)*(exp(x+O(x^n))-1))), n-1))} /* Paul D. Hanna */
    
  • PARI
    /* E.g.f. of sequence shifted left one place: */
    {a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(m*x*A+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} /* Paul D. Hanna */

Formula

a(n) = A035051(n)/n for n > 0.
a(n) = Sum_{i=0...n-1} Stirling2(n-1, i) n^(i-1), n >= 1. (Warme, Corollary 3.15.1, p. 59)
a(n) = E[X_n^{n-1}] / n, n >= 1, where X_n is a Poisson random variable with mean n.
1 = Sum_{n>=0} a(n+1) * x^n/n! * exp( -(n+1)*(exp(x)-1) ). - Paul D. Hanna, Jun 11 2011
E.g.f. satisfies: A(x) = Sum_{n>=0} exp(n*x*A(x)-1)/n! = Sum_{n>=0} a(n+1)*x^n/n!. - Paul D. Hanna, Sep 25 2011
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^(k-1)*k^(n-1)/k!. Cf. A052888. For a refinement of this sequence see A210587. - Peter Bala, Apr 05 2012
a(n) ~ n^(n-2) / (sqrt(1+LambertW(1)) * (LambertW(1))^(n-1) * exp((2-1/LambertW(1))*n)). - Vaclav Kotesovec, Jul 26 2014

Extensions

More terms, formula and comment from Christian G. Bower Dec 15 1999

A134954 Number of "hyperforests" on n labeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.

Original entry on oeis.org

1, 1, 2, 8, 55, 562, 7739, 134808, 2846764, 70720278, 2021462055, 65365925308, 2359387012261, 94042995460130, 4102781803365418, 194459091322828280, 9950303194613104995, 546698973373090998382, 32101070021048906407183, 2006125858248695722280564
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Comments

The part of the name "assuming that each edge contains at least two vertices" is ambiguous. It may mean that not all n vertices have to be covered by some edge of the hypergraph, i.e., it is not necessarily a spanning hyperforest. However it is common to represent uncovered vertices as singleton edges, as in my example. - Gus Wiseman, May 20 2018

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
The a(3) = 8 labeled spanning hyperforests are the following:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(Stirling2(n-1,i) *n^(i-1), i=0..n-1) end: B:= proc(n) x-> add(b(k) *x^k/k!, k=0..n) end: a:= n-> coeff(series(exp(B(n)(x)), x, n+1), x,n) *n!: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 09 2008
  • Mathematica
    b[n_] := b[n] = Sum[StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; B[n_][x_] := Sum[b[k] *x^k/k!, {k, 0, n}]; a[0]=1; a[n_] := SeriesCoefficient[ Exp[B[n][x]], {x, 0, n}] *n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)

Formula

Exponential transform of A030019. - N. J. A. Sloane, Jan 30 2008
Binomial transform of A304911. - Gus Wiseman, May 20 2018
a(n) = Sum of n!*Product_{k=1..n} (A030019(k)/k!)^c_k / (c_k)! over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ exp((n+1)/LambertW(1)) * n^(n-2) / (sqrt(1+LambertW(1)) * exp(2*n+2) * (LambertW(1))^n). - Vaclav Kotesovec, Jul 26 2014

A304918 Number of labeled antichain hyperforests spanning a subset of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 18, 104, 943, 12133, 203038, 4177755, 101922814, 2874725600, 92009680557, 3294276613933, 130446181101044, 5660055256165565, 267044522107706072, 13611243187516647324, 745329728016955480687, 43636132793651444511809, 2719977663069107176768790
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 18 hyperforests are the following:
{{1,2,3}}      {{2,3}}    {{1,3}}    {{1,2}}    {{3}}   {{2}}   {{1}}   {}
{{1,3},{2,3}}  {{2},{3}}  {{1},{3}}  {{1},{2}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
		

Crossrefs

Formula

Binomial transform of A134954.

A304968 Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A134958 with b(1)=1.
    b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

Binomial transform of b(1) = 1, b(n) = A134958(n) otherwise.

A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 8 hypertrees are the following:
{}
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of A035053 if we assume A035053(1) = 0.
a(n) = A304937(n) + 1 for n > 0.

A304937 Number of unlabeled nonempty hypertrees with up to n vertices and no singleton edges.

Original entry on oeis.org

1, 0, 1, 3, 7, 16, 38, 97, 262, 758, 2298, 7258, 23648, 79056, 269628, 935327, 3290259, 11714284, 42139052, 152963036, 559697096, 2062573999, 7649550571, 28534096987, 106994891145, 403119433265, 1525466082178, 5795853930651, 22102635416715, 84579153865569
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 16 hypertrees are the following:
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,2,3,4,5}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)) - x)/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = a(n-1) + A035053(n) for n > 1, a(n) = 1 - n for n < 2.

A144935 Number of hyperforests with n labeled vertices when edges of size 1 are allowed (with no two equal edges), without isolated nodes nor isolated loops.

Original entry on oeis.org

0, 4, 32, 512, 11232, 323648, 11616768, 500984576, 25275854848, 1461945274368, 95418154739712, 6939291871629312, 556552095965593600, 48807623034247200768, 4646562962112939622400, 477275845583045903777792
Offset: 1

Views

Author

Washington Bomfim, Sep 25 2008

Keywords

Examples

			a(5) = 11232 since the partitions of 5 with parts > 1 are [5] and [3,2]. The partition [5] corresponds to 9952 hypergraphs and [3,2] corresponds to 5!4/2!32/3! = 1280.
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H.

Crossrefs

Cf. A134958(hypertrees), A134956(hyperforests).

Formula

a(n) = Sum of n!prod_{k=1}^n\{ frac{ A134958(k)^{c_k} }{ k!^{c_k} c_k! } } over all the partitions of n with parts k > 1, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0.

A304939 Number of labeled nonempty hypertrees (connected antichains with no cycles) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 0, 1, 7, 51, 506, 6843, 118581, 2504855, 62370529, 1788082153, 57997339632, 2099638691439, 83922479506503, 3670657248913385, 174387350448735877, 8942472292255441103, 492294103555090048458, 28958704109012732921523
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 7 hypertrees are the following:
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=if(n<1, n==0, sum(k=1, n, binomial(n, k)*b(k))); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = A305004(n) - 1 for n > 0. - Andrew Howroyd, Aug 27 2018

A304977 Number of unlabeled hyperforests spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 4, 14, 55, 235, 1112, 5672, 30783, 175733, 1042812, 6385278, 40093375, 257031667, 1676581863, 11098295287, 74401300872, 504290610004, 3451219615401, 23821766422463, 165684694539918, 1160267446543182, 8175446407807625, 57928670942338011, 412561582740147643
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 14 hyperforests are the following:
  {{1,2,3}}
  {{3},{1,2}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{2},{3},{1,3}}
  {{2},{3},{1,2,3}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u))-1)))} \\ Andrew Howroyd, Aug 27 2018

Formula

Euler transform of b(1) = 1, b(n > 1) = A134959(n).

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018

A144937 Number of hyperforests with n labeled vertices when edges of size 1 are allowed (with no two equal edges), with at least one component of order 1.

Original entry on oeis.org

2, 4, 32, 368, 6752, 171648, 5638656, 227787008, 10932927488, 608031869952, 38451260291072, 2724757330591744, 213848122843791360, 18412354032091807744, 1725472542353497456640, 174827224579118545174528
Offset: 1

Views

Author

Washington Bomfim, Sep 25 2008

Keywords

Examples

			For n=2 we do not have an hypertree of order 2. The possibilities are one forest, two hyperforests composed by one loop plus one tree and one hyperforest composed by two loops. So a(2)=4.
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H.

Crossrefs

Cf. A134956(hyperforests), A144935(hyperforests without components of order 1).

Formula

a(n) = A134956(n) - A144935(n).
Showing 1-10 of 11 results. Next