A035053
Number of connected graphs on n unlabeled nodes where every block is a complete graph.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0
From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
{{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
(End)
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
- Robert Hellmann and Eckard Bich, A systematic formulation of the virial expansion for nonadditive interaction potentials, J. Chem. Phys. 135, 084117 (2011); doi:10.1063/1.3626524 (7 pages).
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Block Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Wikipedia, Block graph.
Cf.
A007549,
A007563,
A007716,
A030019,
A035051,
A035052,
A054921,
A134957,
A134959,
A245566,
A304867,
A304887,
A304937.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
-
\\ here b(n) is A007563 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018
A007563
Number of rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454
Offset: 0
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1600 (first 200 terms from T. D. Noe)
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 167
- N. J. A. Sloane, Transforms
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008
-
etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018
A035051
Number of labeled rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
0, 1, 2, 12, 116, 1555, 26682, 558215, 13781448, 392209380, 12641850510, 455198725025, 18109373455164, 788854833679549, 37343190699472322, 1908871649888004240, 104789417805394595600, 6148562290130009617619
Offset: 0
- Warren D. Smith and David Warme, Paper in preparation, 2002.
- T. D. Noe, Table of n, a(n) for n=0..100
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465, 2016.
- I. M. Gessel and L. H. Kalikow, Hypergraphs and a functional equation...
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 864
- D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, University of Virginia, 1998.
-
f[n_] := Sum[ n^i*StirlingS2[n - 1, i], {i, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Apr 05 2012 *)
Table[If[n == 0, 0, BellB[n - 1, n]], {n, 0, 100}] (* Emanuele Munarini, May 23 2014 *)
-
a(n):=if n=0 then 0 else sum(stirling2(n-1,k)*n^k,k,0,n);
makelist(a(n),n,0,12); /* Emanuele Munarini, May 23 2014 */
-
for(n=0,30, print1(sum(k=0,n-1, stirling(n-1,k,2)*n^k), ", ")) \\ G. C. Greubel, Nov 17 2017
A035052
Number of sets of rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 134, 444, 1518, 5318, 18989, 68856, 252901, 938847, 3517082, 13278844, 50475876, 193014868, 741963015, 2865552848, 11113696421, 43266626430, 169019868095, 662337418989, 2602923589451, 10256100717875
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr(aa): seq(a(n), n=0..25); # Alois P. Heinz, Sep 09 2008
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[aa]; c = etr[b]; aa = Function[{n}, If[n == 0, 0, c[n-1]]]; a = etr[aa]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([1], EulerT(v))} \\ Andrew Howroyd, May 20 2018
A035081
Number of increasing asymmetric rooted connected graphs where every block is a complete graph.
Original entry on oeis.org
1, 1, 1, 7, 27, 167, 1451, 12672, 133356, 1573608, 20731512, 299642958, 4732486932, 81201040470, 1500094187292, 29730606352920, 628968809015766, 14147458062941100, 337143091156288002, 8485143902146640124
Offset: 1
-
EGJ(v)={Vec(serlaplace(prod(k=1, #v, (1 + x^k/k! + O(x*x^#v))^v[k]))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EGJ(EGJ(v)))); v} \\ Andrew Howroyd, Sep 11 2018
A078341
Triangle read by rows: T(n,k) = n*T(n-1,k-1) + k*T(n-1,k) starting with T(0,0)=1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 7, 6, 0, 1, 18, 46, 24, 0, 1, 41, 228, 326, 120, 0, 1, 88, 930, 2672, 2556, 720, 0, 1, 183, 3406, 17198, 31484, 22212, 5040, 0, 1, 374, 11682, 96040, 295004, 385144, 212976, 40320, 0, 1, 757, 38412, 489298, 2339380, 4965900
Offset: 1
P[1]=1, P[2]=x, P[3]=x+2*x^2, P[4]=x+7*x^2+6*x^3, P[5]=x+18*x^2+46*x^3+24*x^4, P[6]=x+41*x^2+228*x^3+326*x^4+120*x^5.
Rows start 1; 0,1; 0,1,2; 0,1,7,6; 0,1,18,46,24; 0,1,41,228,326,120; ...
-
P[1] := 1; for n from 1 to 10 do P[n+1] := expand(x*diff(P[n],x)+x*n*P[n]) od;
-
p[1][x_] = 1; p[n_][x_] := x*p[n-1]'[x] + x*(n-1)*p[n-1][x]; Table[ CoefficientList[ p[n][x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 29 2013 *)
A264436
Triangle read by rows, inverse Bell transform of the complementary Bell numbers (A000587); T(n,k) for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 14, 15, 6, 1, 0, 89, 100, 45, 10, 1, 0, 716, 834, 405, 105, 15, 1, 0, 6967, 8351, 4284, 1225, 210, 21, 1, 0, 79524, 97596, 52220, 16009, 3080, 378, 28, 1, 0, 1041541, 1303956, 721674, 233268, 48699, 6804, 630, 36, 1
Offset: 0
Triangle starts:
1,
0, 1,
0, 1, 1,
0, 3, 3, 1,
0, 14, 15, 6, 1,
0, 89, 100, 45, 10, 1,
0, 716, 834, 405, 105, 15, 1,
0, 6967, 8351, 4284, 1225, 210, 21, 1,
0, 79524, 97596, 52220, 16009, 3080, 378, 28, 1
-
# uses[bell_transform from A264428, inverse_bell_transform from A264429]
def A264436_matrix(dim):
uno = [1]*dim
complementary_bell_numbers = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, uno))) for n in (0..dim)]
return inverse_bell_transform(dim, complementary_bell_numbers)
A264436_matrix(9)
Showing 1-7 of 7 results.
Comments