cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n unlabeled nodes, i.e., connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134955 for hyperforests.
Graphs where every block is a complete graph are also called block graphs or clique tree. They can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
  {{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018

Formula

G.f.: A(x)=1+(C(x)-1)*(1-B(x)). B: G.f. for A007563. C: G.f. for A035052.
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
a(n) = A304937(n) - A304937(n-1) for n>1, a(n) = 1 for n<2. - Gus Wiseman, May 22 2018

A007563 Number of rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A144042.
Cf. A245566.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018

Formula

Shifts left when Euler transform is applied twice.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524044275... (see A245566), c = 0.1977574301782950818433893126632477845870281049591883888... . - Vaclav Kotesovec, Jul 26 2014

Extensions

New description from Christian G. Bower, Oct 15 1998

A035051 Number of labeled rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 2, 12, 116, 1555, 26682, 558215, 13781448, 392209380, 12641850510, 455198725025, 18109373455164, 788854833679549, 37343190699472322, 1908871649888004240, 104789417805394595600, 6148562290130009617619
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, rooted labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ n^i*StirlingS2[n - 1, i], {i, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Apr 05 2012 *)
    Table[If[n == 0, 0, BellB[n - 1, n]], {n, 0, 100}] (* Emanuele Munarini, May 23 2014 *)
  • Maxima
    a(n):=if n=0 then 0 else sum(stirling2(n-1,k)*n^k,k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, May 23 2014 */
    
  • PARI
    for(n=0,30, print1(sum(k=0,n-1, stirling(n-1,k,2)*n^k), ", ")) \\ G. C. Greubel, Nov 17 2017

Formula

Recurrence: a(1) = 1, a(n) = Sum_{k=1}^{n-1} Bell(k) / k! Sum_{a_j > 0, Sum_{j=1}^k a_j = n-1} {{n-1} choose {a_1, a_2, ..., a_k }} \prod_{j=1}^k a(a_j) for n > 1, where Bell(k) = A000110(k). - Warren D. Smith, Feb 23 1998
a(n) = Sum_{i=0...n-1} S(n-1, i) n^i, where S(N, M) are Stirling numbers of the second kind - David Warme, Mar 25 1998
E.g.f. satisfies A(x)=x*exp(exp(A(x))-1).
Let X_{mu} be a Poisson random variable with mean mu: P(X_{mu} = K) = e^{-mu} mu^K / K!. The n-th moment of X_{mu} is E[X_{mu}^n] = sum_{i=0}^n S(n, i) mu^i. Therefore a(n) = E[X_n^{n-1}]. - Langworth Withers, May 25 2000
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^k*k^(n-1)/k!. Cf. A030019 and A052888. For a refinement of this sequence see A210586. - Peter Bala, Apr 05 2012
a(n) ~ exp((1/LambertW(1)-2)*n) * n^(n-1) / (sqrt(1+LambertW(1)) * LambertW(1)^(n-1)). - Vaclav Kotesovec, Jan 22 2014

A035052 Number of sets of rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 134, 444, 1518, 5318, 18989, 68856, 252901, 938847, 3517082, 13278844, 50475876, 193014868, 741963015, 2865552848, 11113696421, 43266626430, 169019868095, 662337418989, 2602923589451, 10256100717875
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr(aa): seq(a(n), n=0..25); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[aa]; c = etr[b]; aa = Function[{n}, If[n == 0, 0, c[n-1]]]; a = etr[aa]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([1], EulerT(v))} \\ Andrew Howroyd, May 20 2018

Formula

Euler transform of A007563.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.35683683547585... . - Vaclav Kotesovec, Jul 26 2014

A035081 Number of increasing asymmetric rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 7, 27, 167, 1451, 12672, 133356, 1573608, 20731512, 299642958, 4732486932, 81201040470, 1500094187292, 29730606352920, 628968809015766, 14147458062941100, 337143091156288002, 8485143902146640124
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

In an increasing rooted graph nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • PARI
    EGJ(v)={Vec(serlaplace(prod(k=1, #v, (1 + x^k/k! + O(x*x^#v))^v[k]))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EGJ(EGJ(v)))); v} \\ Andrew Howroyd, Sep 11 2018

Formula

Shifts left when EGJ transform applied twice.

A078341 Triangle read by rows: T(n,k) = n*T(n-1,k-1) + k*T(n-1,k) starting with T(0,0)=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 6, 0, 1, 18, 46, 24, 0, 1, 41, 228, 326, 120, 0, 1, 88, 930, 2672, 2556, 720, 0, 1, 183, 3406, 17198, 31484, 22212, 5040, 0, 1, 374, 11682, 96040, 295004, 385144, 212976, 40320, 0, 1, 757, 38412, 489298, 2339380, 4965900
Offset: 1

Views

Author

F. Chapoton, Nov 22 2002

Keywords

Comments

Triangle of coefficients of polynomials P[n]. Let F(t) satisfy dF/dt = exp(x*(exp(F)-1)) and F(0)=0. Then F(t) = Sum_{n>=0} P[n]/n! t^n, where P[n] is a polynomial in x of degree n-1. The constant term of the polynomial is zero for n >= 2. The coefficient of x is 1 for n >= 2. The coefficient of x^n in P[n+1] is n!. The value at 1 is given by sequence A007549.

Examples

			P[1]=1, P[2]=x, P[3]=x+2*x^2, P[4]=x+7*x^2+6*x^3, P[5]=x+18*x^2+46*x^3+24*x^4, P[6]=x+41*x^2+228*x^3+326*x^4+120*x^5.
Rows start 1; 0,1; 0,1,2; 0,1,7,6; 0,1,18,46,24; 0,1,41,228,326,120; ...
		

Crossrefs

Columns include A000007, A057427, A095151, A103768. Diagonals include A000142, A067318. Row sums are A007549.

Programs

  • Maple
    P[1] := 1; for n from 1 to 10 do P[n+1] := expand(x*diff(P[n],x)+x*n*P[n]) od;
  • Mathematica
    p[1][x_] = 1; p[n_][x_] := x*p[n-1]'[x] + x*(n-1)*p[n-1][x]; Table[ CoefficientList[ p[n][x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 29 2013 *)

Formula

P[1]=1; P[n+1] = x*(d/dx)P[n] + x*n*P[n].

Extensions

Additional comments from Henry Bottomley, Feb 15 2005

A264436 Triangle read by rows, inverse Bell transform of the complementary Bell numbers (A000587); T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 14, 15, 6, 1, 0, 89, 100, 45, 10, 1, 0, 716, 834, 405, 105, 15, 1, 0, 6967, 8351, 4284, 1225, 210, 21, 1, 0, 79524, 97596, 52220, 16009, 3080, 378, 28, 1, 0, 1041541, 1303956, 721674, 233268, 48699, 6804, 630, 36, 1
Offset: 0

Views

Author

Peter Luschny, Dec 01 2015

Keywords

Examples

			Triangle starts:
1,
0,     1,
0,     1,     1,
0,     3,     3,     1,
0,    14,    15,     6,     1,
0,    89,   100,    45,    10,    1,
0,   716,   834,   405,   105,   15,   1,
0,  6967,  8351,  4284,  1225,  210,  21,  1,
0, 79524, 97596, 52220, 16009, 3080, 378, 28, 1
		

Crossrefs

Programs

  • Sage
    # uses[bell_transform from A264428, inverse_bell_transform from A264429]
    def A264436_matrix(dim):
        uno = [1]*dim
        complementary_bell_numbers = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, uno))) for n in (0..dim)]
        return inverse_bell_transform(dim, complementary_bell_numbers)
    A264436_matrix(9)

Formula

Row sums are A029768(n-1) for n>=1.
T(n,1) = A007549(n) for n>=1.
Showing 1-7 of 7 results.