A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.
1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0
Examples
From _Gus Wiseman_, May 20 2018: (Start) Non-isomorphic representatives of the a(5) = 9 hypertrees are the following: {{1,2,3,4,5}} {{1,5},{2,3,4,5}} {{1,2,5},{3,4,5}} {{1,2},{2,5},{3,4,5}} {{1,4},{2,5},{3,4,5}} {{1,5},{2,5},{3,4,5}} {{1,3},{2,4},{3,5},{4,5}} {{1,4},{2,5},{3,5},{4,5}} {{1,5},{2,5},{3,5},{4,5}} (End)
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
- Robert Hellmann and Eckard Bich, A systematic formulation of the virial expansion for nonadditive interaction potentials, J. Chem. Phys. 135, 084117 (2011); doi:10.1063/1.3626524 (7 pages).
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Block Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Wikipedia, Block graph.
Crossrefs
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
Mathematica
ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
-
PARI
\\ here b(n) is A007563 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v} seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018
Formula
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
Comments