cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n unlabeled nodes, i.e., connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134955 for hyperforests.
Graphs where every block is a complete graph are also called block graphs or clique tree. They can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
  {{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018

Formula

G.f.: A(x)=1+(C(x)-1)*(1-B(x)). B: G.f. for A007563. C: G.f. for A035052.
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
a(n) = A304937(n) - A304937(n-1) for n>1, a(n) = 1 for n<2. - Gus Wiseman, May 22 2018

A007563 Number of rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A144042.
Cf. A245566.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018

Formula

Shifts left when Euler transform is applied twice.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524044275... (see A245566), c = 0.1977574301782950818433893126632477845870281049591883888... . - Vaclav Kotesovec, Jul 26 2014

Extensions

New description from Christian G. Bower, Oct 15 1998

A245566 Decimal expansion of a constant related to A007563.

Original entry on oeis.org

4, 1, 8, 9, 6, 1, 0, 9, 5, 8, 3, 9, 3, 8, 2, 6, 9, 6, 5, 5, 2, 7, 0, 3, 6, 4, 5, 4, 5, 2, 4, 0, 4, 4, 2, 7, 5, 9, 4, 2, 3, 8, 9, 9, 2, 5, 9, 1, 5, 9, 3, 6, 5, 9, 4, 1, 3, 2, 8, 5, 7, 7, 4, 2, 5, 9, 8, 9, 8, 7, 0, 6, 4, 9, 1, 2, 0, 6, 1, 9, 9, 0, 1, 7, 6, 0, 7, 4, 0, 6, 3, 9, 5, 8, 9, 6, 8, 5, 6, 3, 3, 8, 2, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 26 2014

Keywords

Examples

			4.18961095839382696552703645452404427594238992591593659413285774...
		

Crossrefs

Formula

Equals lim n -> infinity A007563(n)^(1/n).
Equals lim n -> infinity A035052(n)^(1/n).
Equals lim n -> infinity A035053(n)^(1/n).
Equals lim n -> infinity A134955(n)^(1/n).

A318607 Triangle read by rows: T(n,k) is the number of sets of rooted hypertrees on a total of n unlabeled nodes with a total of k edges, (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 42, 46, 20, 1, 6, 30, 86, 145, 128, 48, 1, 7, 42, 153, 353, 483, 364, 115, 1, 8, 56, 248, 729, 1369, 1592, 1029, 286, 1, 9, 72, 376, 1345, 3236, 5150, 5151, 2930, 719, 1, 10, 90, 541, 2287, 6728, 13708, 18792, 16513, 8344, 1842
Offset: 1

Views

Author

Andrew Howroyd, Aug 30 2018

Keywords

Comments

Equivalently, the number of sets of rooted connected graphs on a total of n unlabeled nodes with a total of k blocks where every block is a complete graph.
Bivariate Euler transform of triangle A318602.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 2;
  1, 3, 6, 4;
  1, 4, 12, 16, 9;
  1, 5, 20, 42, 46, 20;
  1, 6, 30, 86, 145, 128, 48;
  1, 7, 42, 153, 353, 483, 364, 115;
  1, 8, 56, 248, 729, 1369, 1592, 1029, 286;
  ...
Case n=3: There are 5 sets of rooted graph which are illustrated below (an x marks a root node). These have 0, 1, 1, 2, 2 blocks so row 3 is 1, 2, 2.
      x        o        o        o        o
              /        / \        \      /
    x   x    x   x    x---o    x---o    x---o
		

Crossrefs

Rightmost diagonal is A000081 (rooted trees).
Row sums are A035052.

Programs

  • PARI
    \\ here EulerMT is Euler transform (bivariate version).
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    A(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); [Vecrev(p) | p <- EulerMT(v)]}
    { my(T=A(10)); for(n=1, #T, print(T[n])) }
Showing 1-4 of 4 results.