A007549 Number of increasing rooted connected graphs where every block is a complete graph.
1, 1, 3, 14, 89, 716, 6967, 79524, 1041541, 15393100, 253377811, 4596600004, 91112351537, 1959073928124, 45414287553455, 1129046241331316, 29965290866974493, 845605519848379436, 25282324544244718411, 798348403914242674980, 26549922456617388029641
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..410 (first 200 terms from Vincenzo Librandi)
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Crossrefs
Programs
-
Maple
exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(exptr(a)): a:= n-> `if`(n=0, 1, b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
-
Mathematica
exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum[ Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = exptr[ exptr[a] ]; a[n_] := If[n == 0, 1, b[n-1]]; Table[ a[n], {n, 1, 19}] (* Jean-François Alcover, May 10 2012, after Alois P. Heinz *)
Formula
Shifts left when exponentiated twice.
Conjecture: a(n) = Sum_{i=0..2^(n-2) - 1} b(i) for n > 1 with a(1) = 1 where b(n) = (L(n) + 2)*b(f(n)) + Sum_{k=0..L(n) - 1} (1 - R(n,k))*b(f(n) + 2^k*(1 - R(n,k))) for n > 0 with b(0) = 1, L(n) = A000523(n), f(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2. Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jul 21 2024
Conjecture: a(n) = D^(n-1)(exp(x)) evaluated at x = 0, where D denotes the operator exp(x)*(1 + x)*d/dx. - Peter Bala, Feb 24 2025
Extensions
New description from Christian G. Bower, Oct 15 1998
Comments