cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007549 Number of increasing rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 3, 14, 89, 716, 6967, 79524, 1041541, 15393100, 253377811, 4596600004, 91112351537, 1959073928124, 45414287553455, 1129046241331316, 29965290866974493, 845605519848379436, 25282324544244718411, 798348403914242674980, 26549922456617388029641
Offset: 1

Views

Author

Keywords

Comments

In an increasing rooted graph, nodes are numbered and the numbers increase as you move away from the root.
(a(n+1)/a(n))/n tends to 1/A073003 = 1.676875... (same limit as A029768). - Vaclav Kotesovec, Jul 26 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A029768.
Row sums of A078341. Column k=1 of A264436.

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(exptr(a)): a:= n-> `if`(n=0, 1, b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum[ Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = exptr[ exptr[a] ]; a[n_] := If[n == 0, 1, b[n-1]]; Table[ a[n], {n, 1, 19}] (* Jean-François Alcover, May 10 2012, after Alois P. Heinz *)

Formula

Shifts left when exponentiated twice.
Conjecture: a(n) = Sum_{i=0..2^(n-2) - 1} b(i) for n > 1 with a(1) = 1 where b(n) = (L(n) + 2)*b(f(n)) + Sum_{k=0..L(n) - 1} (1 - R(n,k))*b(f(n) + 2^k*(1 - R(n,k))) for n > 0 with b(0) = 1, L(n) = A000523(n), f(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2. Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jul 21 2024
Conjecture: a(n) = D^(n-1)(exp(x)) evaluated at x = 0, where D denotes the operator exp(x)*(1 + x)*d/dx. - Peter Bala, Feb 24 2025

Extensions

New description from Christian G. Bower, Oct 15 1998

A103768 a(n) = (29*3^n - 18(n + 3)*2^n + 6n^2 + 24n + 27)/12.

Original entry on oeis.org

0, 0, 6, 46, 228, 930, 3406, 11682, 38412, 122806, 385182, 1192254, 3656452, 11141178, 33791934, 102161962, 308156748, 928008846, 2791497262, 8390220006, 25203689700, 75680274610, 227185526766, 681858569586, 2046204853708
Offset: 0

Views

Author

Henry Bottomley, Feb 15 2005

Keywords

Programs

  • Mathematica
    Table[(29*3^n-18(n+3)2^n+6n^2+24n+27)/12,{n,40}] (* or *) LinearRecurrence[ {10,-40,82,-91,52,-12},{0,0,6,46,228,930},40] (* Harvey P. Dale, Aug 31 2018 *)
  • PARI
    concat([0,0], Vec(-2*x^2*(x^3-4*x^2+7*x-3)/((x-1)^3*(2*x-1)^2*(3*x-1)) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = A078341(n, 3) = 3a(n-1)+n*A095151(n-1).
G.f.: -2*x^2*(x^3-4*x^2+7*x-3) / ((x-1)^3*(2*x-1)^2*(3*x-1)). - Colin Barker, Sep 13 2014
Showing 1-2 of 2 results.