cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035051 Number of labeled rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 2, 12, 116, 1555, 26682, 558215, 13781448, 392209380, 12641850510, 455198725025, 18109373455164, 788854833679549, 37343190699472322, 1908871649888004240, 104789417805394595600, 6148562290130009617619
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, rooted labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ n^i*StirlingS2[n - 1, i], {i, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Apr 05 2012 *)
    Table[If[n == 0, 0, BellB[n - 1, n]], {n, 0, 100}] (* Emanuele Munarini, May 23 2014 *)
  • Maxima
    a(n):=if n=0 then 0 else sum(stirling2(n-1,k)*n^k,k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, May 23 2014 */
    
  • PARI
    for(n=0,30, print1(sum(k=0,n-1, stirling(n-1,k,2)*n^k), ", ")) \\ G. C. Greubel, Nov 17 2017

Formula

Recurrence: a(1) = 1, a(n) = Sum_{k=1}^{n-1} Bell(k) / k! Sum_{a_j > 0, Sum_{j=1}^k a_j = n-1} {{n-1} choose {a_1, a_2, ..., a_k }} \prod_{j=1}^k a(a_j) for n > 1, where Bell(k) = A000110(k). - Warren D. Smith, Feb 23 1998
a(n) = Sum_{i=0...n-1} S(n-1, i) n^i, where S(N, M) are Stirling numbers of the second kind - David Warme, Mar 25 1998
E.g.f. satisfies A(x)=x*exp(exp(A(x))-1).
Let X_{mu} be a Poisson random variable with mean mu: P(X_{mu} = K) = e^{-mu} mu^K / K!. The n-th moment of X_{mu} is E[X_{mu}^n] = sum_{i=0}^n S(n, i) mu^i. Therefore a(n) = E[X_n^{n-1}]. - Langworth Withers, May 25 2000
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^k*k^(n-1)/k!. Cf. A030019 and A052888. For a refinement of this sequence see A210586. - Peter Bala, Apr 05 2012
a(n) ~ exp((1/LambertW(1)-2)*n) * n^(n-1) / (sqrt(1+LambertW(1)) * LambertW(1)^(n-1)). - Vaclav Kotesovec, Jan 22 2014

A210587 Triangle T(n,k) read by rows: T(n,k) is the number of unrooted hypertrees on n labeled vertices with k hyperedges, n >= 2, 1 <= k <= n-1.

Original entry on oeis.org

1, 1, 3, 1, 12, 16, 1, 35, 150, 125, 1, 90, 900, 2160, 1296, 1, 217, 4410, 22295, 36015, 16807, 1, 504, 19264, 179200, 573440, 688128, 262144, 1, 1143, 78246, 1240029, 6889050, 15707034, 14880348, 4782969, 1, 2550, 302500, 7770000, 69510000, 264600000, 462000000, 360000000, 100000000
Offset: 2

Views

Author

Peter Bala, Mar 26 2012

Keywords

Comments

See A210586 for the definition of a hypertree and for the enumeration of rooted hypertrees.

Examples

			Triangle begins
.n\k.|....1.....2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = =
..2..|....1
..3..|....1.....3
..4..|....1....12.....16
..5..|....1....35....150....125
..6..|....1....90....900...2160...1296
..7..|....1...217...4410..22295..36015..16807
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 12. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
		

Crossrefs

Cf. A030019 (row sums). Cf. A210586, A048993.

Programs

  • Maple
    with(combinat):
    A210587 := (n, k) -> n^(k-1)*stirling2(n-1, k):
    for n from 2 to 10 do seq(A210587(n, k), k = 1..n-1) end do;
    # Peter Bala, Oct 28 2015
  • Mathematica
    T[n_, k_] := n^(k - 1)*StirlingS2[n - 1, k];
    Table[T[n, k], {n, 2, 10}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    T(n,k) = {n^(k-1)*stirling(n-1,k,2)}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018

Formula

T(n,k) = n^(k-1)*Stirling2(n-1,k). T(n,k) = 1/n*A210586(n,k).
E.g.f.: A(x,t) = t + x*t^2/2! + (x + 3*x^2)*t^3/3! + ..., where t*d/dt(A(x,t)) is the e.g.f. for A210586.
Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^(k-1)*k^(n-1)x^k/k!.
Row sums A030019.

A367752 Number of shapes of labeled rooted hypertrees with n vertices.

Original entry on oeis.org

1, 1, 4, 29, 256, 3007, 42932, 721121, 13982563, 306967231, 7527903208, 203977383469, 6051630040496, 195111205542541, 6792697846367791, 253966747582533681, 10149075292428481965, 431705938073882999275, 19474660918369182445456, 928660364396786865580881
Offset: 1

Views

Author

Paul Laubie, Nov 29 2023

Keywords

Comments

The shape of a labeled rooted hypertree is a labeled rooted hypertrees where we replace all the maximal subtrees by a corolla rooted on a new unlabeled black vertex.
If we remove the black vertices that are the parent of only 1 white vertex, we obtain labeled rooted hypertrees with black and white vertices such that:
- black vertices are unlabeled;
- black vertices have at least two children;
- the children of a black vertex are white, and are connected to it via simple edges (edges connecting only two vertices);
- the children of a white vertex are connected to it via hyperedges (edges connecting strictly more than two vertices).

Examples

			For n = 3 the a(3) = 4 solutions are:
  - the corolla with a black root which have 3 white children,
  - and the 3 possible labeling of the hypertree with a white root which have 2 white children connected to it via a hyperedge.
		

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(serreverse(log(1+x)*exp(-exp(x)+x+1)))) \\ Michel Marcus, Nov 30 2023
  • SageMath
    R.=PowerSeriesRing(QQ);(ln(1+t)*exp(-exp(t)+t+1)).reverse().egf_to_ogf().list()[1:]
    

Formula

E.g.f.: series reversion of log(1+x)*exp(-exp(x)+x+1).

A367753 Number of shapes of labeled forest of rooted hypertrees with n vertices.

Original entry on oeis.org

1, 2, 8, 55, 507, 5969, 85605, 1445420, 28110615, 618760615, 15207174501, 412790636977, 12265337498000, 395962288858946, 13800754780797740, 516494067220932259, 20658199248901273576, 879406216174705907137, 39698270229941320201019, 1894212537494300993244732
Offset: 1

Views

Author

Paul Laubie, Nov 29 2023

Keywords

Comments

See A367752 for the definition of the shape of a labeled rooted hypertree.

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(serreverse((1+x)*log(1+log(1+x))*exp(-x)))) \\ Michel Marcus, Nov 30 2023
  • SageMath
    R.=PowerSeriesRing(QQ,30);(1+t)*(ln(1+ln(1+t))*exp(-t)).reverse().egf_to_ogf().list()[1:]
    

Formula

E.g.f.: series reversion of (1+x)*log(1+log(1+x))*exp(-x).
Showing 1-4 of 4 results.