A134954
Number of "hyperforests" on n labeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.
Original entry on oeis.org
1, 1, 2, 8, 55, 562, 7739, 134808, 2846764, 70720278, 2021462055, 65365925308, 2359387012261, 94042995460130, 4102781803365418, 194459091322828280, 9950303194613104995, 546698973373090998382, 32101070021048906407183, 2006125858248695722280564
Offset: 0
From _Gus Wiseman_, May 20 2018: (Start)
The a(3) = 8 labeled spanning hyperforests are the following:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
(End)
- D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008
Cf.
A030019,
A035053,
A048143,
A054921,
A134955,
A134956,
A134957,
A144959,
A242817,
A304716,
A304717,
A304867,
A304911,
A304912.
-
b:= proc(n) option remember; add(Stirling2(n-1,i) *n^(i-1), i=0..n-1) end: B:= proc(n) x-> add(b(k) *x^k/k!, k=0..n) end: a:= n-> coeff(series(exp(B(n)(x)), x, n+1), x,n) *n!: seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
b[n_] := b[n] = Sum[StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; B[n_][x_] := Sum[b[k] *x^k/k!, {k, 0, n}]; a[0]=1; a[n_] := SeriesCoefficient[ Exp[B[n][x]], {x, 0, n}] *n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
A189233
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals upwards, where the e.g.f. of column k is exp(k*(e^x-1)).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 94, 57, 20, 5, 1, 0, 203, 454, 309, 116, 30, 6, 1, 0, 877, 2430, 1866, 756, 205, 42, 7, 1, 0, 4140, 14214, 12351, 5428, 1555, 330, 56, 8, 1, 0, 21147, 89918, 88563, 42356, 12880, 2850, 497, 72, 9, 1
Offset: 0
Square array begins:
A000007 A000110 A001861 A027710 A078944 A144180 A144223 A144263
A000012 1, 1, 1, 1, 1, 1, 1, 1, ...
A001477 0, 1, 2, 3, 4, 5, 6, 7, ...
A002378 0, 2, 6, 12, 20, 30, 42, 56, ...
A033445 0, 5, 22, 57, 116, 205, 330, 497, ...
0, 15, 94, 309, 756, 1555, 2850, 4809, ...
0, 52, 454, 1866, 5428, 12880, 26682, 50134, ...
-
# Cf. also the Maple prog. of Alois P. Heinz in A144223 and A144180.
expnums := proc(k,n) option remember; local j;
`if`(n = 0, 1, (1+add(binomial(n-1,j-1)*expnums(k,n-j), j = 1..n-1))*k) end:
A189233_array := (k, n) -> expnums(k,n):
seq(print(seq(A189233_array(k,n), k = 0..7)), n = 0..5);
A189233_egf := k -> exp(k*(exp(x)-1));
T := (n,k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
seq(lprint(seq(T(n,k), k = 0..7)), n = 0..5):
# alternative Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
-
max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, ] = 1; a[n?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid (* Geoffrey Critzer, Dec 23 2018 *)
-
A(n,k):=if k=0 and n=0 then 1 else if k=0 then 0 else sum(stirling2(n,i)*k^i,i,0,n); /* Vladimir Kruchinin, Apr 12 2019 */
A292860
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 15, 0, 1, 5, 20, 57, 94, 52, 0, 1, 6, 30, 116, 309, 454, 203, 0, 1, 7, 42, 205, 756, 1866, 2430, 877, 0, 1, 8, 56, 330, 1555, 5428, 12351, 14214, 4140, 0, 1, 9, 72, 497, 2850, 12880, 42356, 88563, 89918, 21147, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 5, 22, 57, 116, 205, 330, ...
0, 15, 94, 309, 756, 1555, 2850, ...
0, 52, 454, 1866, 5428, 12880, 26682, ...
0, 203, 2430, 12351, 42356, 115155, 268098, ...
Columns k=0-10 give:
A000007,
A000110,
A001861,
A027710,
A078944,
A144180,
A144223,
A144263,
A221159,
A276506,
A276507.
Same array, different indexing is
A189233.
-
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
-
A[0, ] = 1; A[n /; n >= 0, k_ /; k >= 0] := A[n, k] = k*Sum[Binomial[n-1, j]*A[j, k], {j, 0, n-1}]; A[, ] = 0;
Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)
A292860[n_, k_] := BellB[n, k]; Table[A292860[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)
A292866
a(n) = n! * [x^n] exp(n*(1 - exp(x))).
Original entry on oeis.org
1, -1, 2, -3, -20, 370, -4074, 34293, -138312, -2932533, 106271090, -2192834490, 32208497124, -206343936097, -7657279887698, 412496622532785, -12455477719752976, 260294034150380430, -2256541295745391542, -122593550603339550843, 8728842979656718306780
Offset: 0
-
b:= proc(n, k) option remember; `if`(n=0, 1,
-(1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 25 2017
-
Table[n!*SeriesCoefficient[E^(n*(1 - E^x)),{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 25 2017 *)
a[n_] := BellB[n, -n]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 23 2021 *)
-
{a(n) = sum(k=0, n, (-n)^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << k * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[j]}}
ary
end
def A292866(n)
(0..n).map{|i| A(-i, i)[-1]}
end
p A292866(20)
A301419
a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).
Original entry on oeis.org
1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
Offset: 0
Cf.
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A008277,
A075506,
A075507,
A075508,
A075509,
A242817,
A292914,
A318183.
-
List([0..20],n->Sum([0..n],k->n^(n-k)*Stirling2(n,k))); # Muniru A Asiru, Mar 20 2018
-
Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
(* Or: *)
A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
-
a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018
A317172
a(n) = n! * [x^n] 1/(1 - n*log(1 + x)).
Original entry on oeis.org
1, 1, 6, 114, 4168, 248870, 21966768, 2685571560, 434202400896, 89679267601632, 23032451508686400, 7199033431349412576, 2690461258552995849216, 1184680716090974803461072, 606986901206377433194091520, 358023049940533240478842992000, 240858598980174362552808566194176
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 - n Log[1 + x]), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[StirlingS1[n, k] n^k k!, {k, n}], {n, 16}]]
-
{a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 1))} \\ Seiichi Manyama, Jun 12 2020
A334240
a(n) = exp(-n) * Sum_{k>=0} (k + 1)^n * n^k / k!.
Original entry on oeis.org
1, 2, 11, 103, 1357, 23031, 478207, 11741094, 332734521, 10689163687, 383851610331, 15236978883127, 662491755803269, 31311446539427926, 1598351161031967063, 87638233726766111731, 5136809177699534717169, 320521818480481139673919, 21212211430440994022892019
Offset: 0
-
Table[n! SeriesCoefficient[Exp[x + n (Exp[x] - 1)], {x, 0, n}], {n, 0, 18}]
Table[Sum[Binomial[n, k] BellB[k, n], {k, 0, n}], {n, 0, 18}]
A350256
Triangle read by rows. T(n, k) = BellPolynomial(n, k).
Original entry on oeis.org
1, 0, 1, 0, 2, 6, 0, 5, 22, 57, 0, 15, 94, 309, 756, 0, 52, 454, 1866, 5428, 12880, 0, 203, 2430, 12351, 42356, 115155, 268098, 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839, 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
Offset: 0
Triangle begins:
[0] 1
[1] 0, 1
[2] 0, 2, 6
[3] 0, 5, 22, 57
[4] 0, 15, 94, 309, 756
[5] 0, 52, 454, 1866, 5428, 12880
[6] 0, 203, 2430, 12351, 42356, 115155, 268098
[7] 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839
[8] 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
-
A350256 := (n, k) -> ifelse(n = 0, 1, BellB(n, k)):
seq(seq(A350256(n, k), k = 0..n), n = 0..8);
-
T[n_, k_] := BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A334242
a(n) = exp(-n) * Sum_{k>=0} (k + n)^n * n^k / k!.
Original entry on oeis.org
1, 2, 18, 273, 5812, 159255, 5336322, 211385076, 9663571400, 500742188415, 29002424377110, 1856728690107027, 130194428384173116, 9923500366931329282, 816909605562423271178, 72231668379957026776065, 6827368666949651984215824, 686970682778467688690704639
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n (Exp[x] + x - 1)], {x, 0, n}], {n, 0, 17}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[k, n] n^(n - k), {k, 0, n}], {n, 1, 17}]]
A299824
a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)!.
Original entry on oeis.org
2, 22, 309, 5428, 115155, 2869242, 82187658, 2661876168, 96202473183, 3838516103310, 167606767714397, 7949901069639228, 407048805012563038, 22376916254447538882, 1314573505901491675965, 82188946843192555474704, 5448870914168179374456623, 381819805747937892412056342
Offset: 1
a(4) = (1/e^4)*Sum_{j >= 1} j^4 * 4^j / (j-1)! = 5428.
-
a(n) = round(exp(-n)*suminf(j = 1, (j^n)*(n^j)/(j-1)!)); \\ Michel Marcus, Feb 24 2018
-
A299824(n,f=exp(n),S=n/f,t)=for(j=2,oo,S+=(t=j^n*n^j)/(f*=j-1);tn&&return(ceil(S))) \\ For n > 23, use \p## with some ## >= 2n. - M. F. Hasler, Mar 09 2018
Showing 1-10 of 22 results.
Comments