A334241
a(n) = exp(n) * Sum_{k>=0} (k + 1)^n * (-n)^k / k!.
Original entry on oeis.org
1, 0, -1, 7, -43, 221, -341, -15980, 370761, -5688125, 62689871, -197586839, -14973562979, 585250669316, -14306382821485, 240985102271971, -1121421968408303, -122020498882279931, 6674724196051810807, -223424819176020519168, 5051515662105879438501
Offset: 0
-
Table[n! SeriesCoefficient[Exp[x + n (1 - Exp[x])], {x, 0, n}], {n, 0, 20}]
Table[Sum[Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}]
A334242
a(n) = exp(-n) * Sum_{k>=0} (k + n)^n * n^k / k!.
Original entry on oeis.org
1, 2, 18, 273, 5812, 159255, 5336322, 211385076, 9663571400, 500742188415, 29002424377110, 1856728690107027, 130194428384173116, 9923500366931329282, 816909605562423271178, 72231668379957026776065, 6827368666949651984215824, 686970682778467688690704639
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n (Exp[x] + x - 1)], {x, 0, n}], {n, 0, 17}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[k, n] n^(n - k), {k, 0, n}], {n, 1, 17}]]
A334243
a(n) = exp(n) * Sum_{k>=0} (k + n)^n * (-n)^k / k!.
Original entry on oeis.org
1, 0, -2, -3, 44, 245, -2346, -33278, 186808, 6888555, -6774910, -1986368439, -10227075420, 738830661296, 10363304656782, -327255834908715, -9380517430358288, 152180429032236325, 9132761207739810618, -46897839494116200918, -9833058047657527541220
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n (1 + x - Exp[x])], {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[k, -n] n^(n - k), {k, 0, n}], {n, 1, 20}]]
A335975
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1) + x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 15, 1, 1, 5, 19, 47, 52, 1, 1, 6, 29, 103, 227, 203, 1, 1, 7, 41, 189, 622, 1215, 877, 1, 1, 8, 55, 311, 1357, 4117, 7107, 4140, 1, 1, 9, 71, 475, 2576, 10589, 29521, 44959, 21147, 1, 1, 10, 89, 687, 4447, 23031, 88909, 227290, 305091, 115975, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 5, 11, 19, 29, 41, 55, ...
1, 15, 47, 103, 189, 311, 475, ...
1, 52, 227, 622, 1357, 2576, 4447, ...
1, 203, 1215, 4117, 10589, 23031, 44683, ...
1, 877, 7107, 29521, 88909, 220341, 478207, ...
-
T[0, k_] := 1; T[n_, k_] := T[n - 1, k] + k * Sum[T[j, k] * Binomial[n - 1, j], {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Jul 03 2020 *)
A335867
a(n) = exp(-n) * Sum_{k>=0} n^k * (k - 1)^n / k!.
Original entry on oeis.org
1, 0, 3, 29, 397, 6879, 144751, 3587100, 102351929, 3305310065, 119186370091, 4746969337923, 206966647324933, 9804683604806908, 501491905963040903, 27544070654283355889, 1616869985889305862385, 101020181695996141703335, 6693303018177050431484035, 468770856837303230888704208
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n (Exp[x] - 1) - x], {x, 0, n}], {n, 0, 19}]
Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, n], {k, 0, n}], {n, 0, 19}]
A331345
a(n) = (1/n^2) * Sum_{k>=1} k^n * (1 - 1/n)^(k - 1).
Original entry on oeis.org
1, 3, 37, 1015, 48601, 3583811, 376372333, 53343571695, 9808511445361, 2270198126932219, 645790373135121061, 221449391959470686375, 90084675298978081317961, 42890688646618728144279987, 23627228721958495690763944861, 14910259060767841554203065990111
Offset: 1
-
Join[{1}, Table[1/n^2 Sum[k^n (1 - 1/n)^(k - 1), {k, 1, Infinity}], {n, 2, 16}]]
Table[n! SeriesCoefficient[(Exp[x] - 1)/(Exp[x] - n (Exp[x] - 1)), {x, 0, n}], {n, 1, 16}]
Showing 1-6 of 6 results.