cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334240 a(n) = exp(-n) * Sum_{k>=0} (k + 1)^n * n^k / k!.

Original entry on oeis.org

1, 2, 11, 103, 1357, 23031, 478207, 11741094, 332734521, 10689163687, 383851610331, 15236978883127, 662491755803269, 31311446539427926, 1598351161031967063, 87638233726766111731, 5136809177699534717169, 320521818480481139673919, 21212211430440994022892019
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x + n (Exp[x] - 1)], {x, 0, n}], {n, 0, 18}]
    Table[Sum[Binomial[n, k] BellB[k, n], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (n*x/(1 - x))^k / Product_{j=1..k} (1 - j*x/(1 - x)).
a(n) = n! * [x^n] exp(x + n*(exp(x) - 1)).
a(n) = Sum_{k=0..n} binomial(n,k) * BellPolynomial_k(n).
a(n) ~ exp((1/LambertW(1) - 2)*n) * n^n / (sqrt(1+LambertW(1)) * LambertW(1)^(n+1)). - Vaclav Kotesovec, Jun 08 2020

A338282 a(n) = (1/e^n) * Sum_{j>=3} j^n * n^j / (j-3)!.

Original entry on oeis.org

0, 4, 216, 7371, 239424, 8127875, 296315496, 11685617608, 498593804800, 22959117809685, 1137033860419000, 60338078785131785, 3418430599382500800, 206053517402599981504, 13172124530670958537160, 890361160360138336174875, 63463906792476058870550528, 4758276450884470061869230823
Offset: 0

Views

Author

Pedro Caceres, Oct 20 2020

Keywords

Examples

			a(3) = 7371 = (1/e^3) * Sum_{j>=3} j^3 * 3^j / factorial(j-3).
		

Crossrefs

Programs

  • Maple
    seq(add(n^(k+3)*A143495(n+3, k+3), k = 0..n), n = 0..17); # Peter Luschny, Oct 21 2020
  • Mathematica
    a[n_] := Exp[-n] * Sum[j^n * n^j/(j - 3)!, {j, 3, Infinity}]; Array[a, 17, 0] (* Amiram Eldar, Oct 20 2020 *)
  • PARI
    a(n)={sum(k=0, n+3, n^k*(stirling(n+3,k,2) - 3*stirling(n+2,k,2) + 2*stirling(n+1,k,2)))} \\ Andrew Howroyd, Oct 20 2020
  • SageMath
    # Increase precision for larger n!
    R = RealField(100)
    t = 3
    sol = [0]*18
    for n in range(0, 18):
        suma = R(0)
        for j in range(t, 1000):
            suma += (j^n * n^j) / factorial(j - t)
        suma *= exp(-n)
        sol[n] = round(suma)
    print(sol) # Peter Luschny, Oct 20 2020
    

Formula

a(n) = Sum_{k=0..n+3} n^k*(Stirling2(n+3,k) - 3*Stirling2(n+2,k) + 2*Stirling2(n+1,k)). - Andrew Howroyd, Oct 20 2020
a(n) = Sum_{k=0..n} n^(k+3)*A143495(n+3, k+3). - Peter Luschny, Oct 21 2020

A332188 a(n) = (1/e^n) * Sum_{j>=2} j^n * n^j / (j-2)!.

Original entry on oeis.org

0, 3, 72, 1557, 36928, 986550, 29641608, 994006209, 36887753216, 1502798312547, 66730937637400, 3209318261685690, 166242143849148864, 9229638177763268395, 546842961612529341032, 34443269219453881669425
Offset: 0

Views

Author

Pedro Caceres, Oct 30 2020

Keywords

Examples

			a(3) = 1557 = (1/e^3) * Sum_{j>=2} j^3 * 3^j / factorial(j-2).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[n^k*(StirlingS2[n + 2, k] - StirlingS2[n + 1, k]), {k, 2, n + 2}]; Array[a, 16, 0] (* Amiram Eldar, Oct 30 2020 *)
  • PARI
    a(n) = sum(k=0, n+2, n^k*(stirling(n+2,k,2) - stirling(n+1,k,2))); \\ Michel Marcus, Oct 30 2020
  • SageMath
    # Increase precision for larger n!
    R = RealField(100)
    t = 2
    sol = [0]*18
    for n in range(0, 18):
        suma = R(0)
        for j in range(t, 1000):
            suma += (j^n * n^j) / factorial(j - t)
        suma *= exp(-n)
        sol[n] = round(suma)
    print(sol) # Thanks to Peter Luschny for his example in A338282.
    

Formula

a(n) = Sum_{k=0..n+2} n^k*(Stirling2(n+2,k) - Stirling2(n+1,k)). [Thanks to Andrew Howroyd for his example in A338282]
Showing 1-3 of 3 results.