cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A242817 a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).

Original entry on oeis.org

1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
Offset: 0

Views

Author

Emanuele Munarini, May 23 2014

Keywords

Crossrefs

Main diagonal of A189233 and of A292860.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, (1+
          add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 17 2016
  • Mathematica
    Table[BellB[n, n], {n, 0, 100}]
  • Maxima
    a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n);
    makelist(a(n),n,0,30);
    
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ Michel Marcus, Apr 20 2016

Formula

E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018

Extensions

Name corrected by Pontus von Brömssen, Dec 05 2020

A292861 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*(1 - exp(x))).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 1, 0, 1, -4, 6, 2, 1, 0, 1, -5, 12, -3, -6, -2, 0, 1, -6, 20, -20, -21, -14, -9, 0, 1, -7, 30, -55, -20, 24, 26, -9, 0, 1, -8, 42, -114, 45, 172, 195, 178, 50, 0, 1, -9, 56, -203, 246, 370, 108, -111, 90, 267, 0, 1, -10, 72, -328, 679, 318, -1105, -2388, -3072, -2382, 413, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1,     1,     1, ...
   0, -1,  -2,  -3,  -4,    -5,    -6, ...
   0,  0,   2,   6,  12,    20,    30, ...
   0,  1,   2,  -3, -20,   -55,  -114, ...
   0,  1,  -6, -21, -20,    45,   246, ...
   0, -2, -14,  24, 172,   370,   318, ...
   0, -9,  26, 195, 108, -1105, -4074, ...
		

Crossrefs

Columns k=0..4 give A000007, A000587, A213170, A309084, A309085.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292866.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    A[n_, k_] := Sum[(-k)^j StirlingS2[n, j], {j, 0, n}];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 10 2021 *)
    A292861[n_, k_] := BellB[k, k - n];
    Table[A292861[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)

Formula

A(0,k) = 1 and A(n,k) = -k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} (-k)^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, -k). - Peter Luschny, Dec 23 2021

A350263 Triangle read by rows. T(n, k) = BellPolynomial(n, -k).

Original entry on oeis.org

1, 0, -1, 0, 0, 2, 0, 1, 2, -3, 0, 1, -6, -21, -20, 0, -2, -14, 24, 172, 370, 0, -9, 26, 195, 108, -1105, -4074, 0, -9, 178, -111, -2388, -4805, 2046, 34293, 0, 50, 90, -3072, -3220, 23670, 87510, 111860, -138312, 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
Offset: 0

Views

Author

Peter Luschny, Dec 23 2021

Keywords

Examples

			[0] 1
[1] 0,  -1
[2] 0,   0,     2
[3] 0,   1,     2,    -3
[4] 0,   1,    -6,   -21,   -20
[5] 0,  -2,   -14,    24,   172,    370
[6] 0,  -9,    26,   195,   108,  -1105, -  4074
[7] 0,  -9,   178,  -111, -2388,  -4805,    2046,    34293
[8] 0,  50,    90, -3072, -3220,  23670,   87510,   111860,  -138312
[9] 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
		

Crossrefs

Main diagonal: A292866, column 1: A000587, variant: A292861.

Programs

  • Maple
    A350263 := (n, k) -> ifelse(n = 0, 1, BellB(n, -k)):
    seq(seq(A350263(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := BellB[n, -k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten

A318183 a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 + n*j*x).

Original entry on oeis.org

1, 1, -1, 1, 25, -674, 15211, -331827, 5987745, 15901597, -13125035449, 1292056076070, -103145930581319, 7462324963409941, -464957409070517453, 16313974895147212801, 2059903411953959582849, -708700955022151333496910, 143215213612865558214820303, -24681846509158429152517973103
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 20 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^k/Product[(1 + n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[n! SeriesCoefficient[Exp[(1 - Exp[-n x])/n], {x, 0, n}], {n, 19}]]
    Join[{1}, Table[Sum[(-n)^(n - k) StirlingS2[n, k], {k, n}], {n, 19}]]
    Join[{1}, Table[(-n)^n BellB[n, -1/n], {n, 1, 21}]] (* Peter Luschny, Aug 20 2018 *)
  • PARI
    {a(n) = sum(k=0, n, (-n)^(n-k)*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 27 2019

Formula

a(n) = n! * [x^n] exp((1 - exp(-n*x))/n), for n > 0.
a(n) = Sum_{k=0..n} (-n)^(n-k)*Stirling2(n,k).
a(n) = (-n)^n*BellPolynomial_n(-1/n) for n >= 1. - Peter Luschny, Aug 20 2018

A334241 a(n) = exp(n) * Sum_{k>=0} (k + 1)^n * (-n)^k / k!.

Original entry on oeis.org

1, 0, -1, 7, -43, 221, -341, -15980, 370761, -5688125, 62689871, -197586839, -14973562979, 585250669316, -14306382821485, 240985102271971, -1121421968408303, -122020498882279931, 6674724196051810807, -223424819176020519168, 5051515662105879438501
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x + n (1 - Exp[x])], {x, 0, n}], {n, 0, 20}]
    Table[Sum[Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}]

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (-n*x/(1 - x))^k / Product_{j=1..k} (1 - j*x/(1 - x)).
a(n) = n! * [x^n] exp(x + n*(1 - exp(x))).
a(n) = Sum_{k=0..n} binomial(n,k) * BellPolynomial_k(-n).

A335868 a(n) = exp(n) * Sum_{k>=0} (-n)^k * (k - 1)^n / k!.

Original entry on oeis.org

1, -2, 7, -31, 149, -631, 475, 43210, -844727, 10960505, -86569889, -584746911, 46302579229, -1304510879686, 25366896568707, -277053418780891, -4271166460501743, 384590020131637825, -14617527176248527545, 380117694164438489422, -5265650620303861935579
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n (1 - Exp[x]) - x], {x, 0, n}], {n, 0, 20}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}]

Formula

a(n) = n! * [x^n] exp(n*(1 - exp(x)) - x).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * BellPolynomial_k(-n).

A334243 a(n) = exp(n) * Sum_{k>=0} (k + n)^n * (-n)^k / k!.

Original entry on oeis.org

1, 0, -2, -3, 44, 245, -2346, -33278, 186808, 6888555, -6774910, -1986368439, -10227075420, 738830661296, 10363304656782, -327255834908715, -9380517430358288, 152180429032236325, 9132761207739810618, -46897839494116200918, -9833058047657527541220
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n (1 + x - Exp[x])], {x, 0, n}], {n, 0, 20}]
    Join[{1}, Table[Sum[Binomial[n, k] BellB[k, -n] n^(n - k), {k, 0, n}], {n, 1, 20}]]

Formula

a(n) = n! * [x^n] exp(n*(1 + x - exp(x))).
a(n) = Sum_{k=0..n} binomial(n,k) * BellPolynomial_k(-n) * n^(n-k).

A334986 a(n) = exp(n) * Sum_{k>=0} (-1)^k * n^(k-1) * k^(n-1) / k!.

Original entry on oeis.org

1, -1, 2, -5, 9, 53, -1107, 12983, -116470, 560049, 8370713, -346902877, 7551856337, -117404648467, 913399734614, 22560135521007, -1393700803877939, 44331044030953865, -979905458659247779, 10462396536804802459, 367799071887303276422, -30046998012662824941947
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k StirlingS2[n - 1, k] n^(k - 1), {k, 0, n - 1}], {n, 1, 22}]
    Table[BellB[n - 1, -n]/n, {n, 1, 22}]
  • PARI
    a(n)={sum(k=0, n-1, (-1)^k * stirling(n-1,k,2) * n^(k-1))} \\ Andrew Howroyd, May 18 2020

Formula

a(n) = Sum_{k=0..n-1} (-1)^k * Stirling2(n-1,k) * n^(k-1).
a(n) = BellPolynomial_(n-1)(-n) / n.

A334258 a(n) = (-1)^n * exp(n) * Sum_{k>=1} (-1)^k * n^(k-1) * k^n / k!.

Original entry on oeis.org

1, 1, 1, -5, -74, -679, -4899, -17289, 325837, 10627109, 199348590, 2684041427, 15872610469, -546948563407, -27499774835519, -778467357484561, -15311413773551790, -125363405319188419, 6452292137017871097, 436442148982835915339, 16494863323310244977581
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[InverseSeries[Series[-Log[1 - x] Exp[-x], {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
    Table[Sum[(-1)^(n - k) StirlingS2[n, k] n^(k - 1), {k, 1, n}], {n, 1, 21}]
    Table[(-1)^n BellB[n, -n]/n, {n, 1, 21}]
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k) * stirling(n,k,2) * n^(k-1)); \\ Michel Marcus, Apr 20 2020

Formula

E.g.f.: series reversion of -log(1 - x) * exp(-x).
a(n) = (n - 1)! * [x^n] exp(n*(1 - exp(-x))).
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling2(n,k) * n^(k-1).
a(n) = (-1)^n * BellPolynomial_n(-n) / n.
Showing 1-9 of 9 results.