A350264
a(n) = Sum_{k=0..n} BellPolynomial(n, k), row sums of A350263.
Original entry on oeis.org
1, 1, 8, 84, 1174, 20680, 440593, 11024076, 316969656, 10299839283, 373313501065, 14932585789000, 653449085198220, 31053925215635803, 1592721740865950464, 87690229418143373920, 5158511908430168388088, 322910810936913397280700, 21431596667884889101766973
Offset: 0
-
Table[Sum[BellB[n, k], {k, 0, n}], {n, 0, 18}]
A350256
Triangle read by rows. T(n, k) = BellPolynomial(n, k).
Original entry on oeis.org
1, 0, 1, 0, 2, 6, 0, 5, 22, 57, 0, 15, 94, 309, 756, 0, 52, 454, 1866, 5428, 12880, 0, 203, 2430, 12351, 42356, 115155, 268098, 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839, 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
Offset: 0
Triangle begins:
[0] 1
[1] 0, 1
[2] 0, 2, 6
[3] 0, 5, 22, 57
[4] 0, 15, 94, 309, 756
[5] 0, 52, 454, 1866, 5428, 12880
[6] 0, 203, 2430, 12351, 42356, 115155, 268098
[7] 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839
[8] 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
-
A350256 := (n, k) -> ifelse(n = 0, 1, BellB(n, k)):
seq(seq(A350256(n, k), k = 0..n), n = 0..8);
-
T[n_, k_] := BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A350257
Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, k).
Original entry on oeis.org
1, 0, 1, 0, 2, 24, 0, 5, 176, 1539, 0, 15, 1504, 25029, 193536, 0, 52, 14528, 453438, 5558272, 40250000, 0, 203, 155520, 9003879, 173490176, 1799296875, 12508380288, 0, 877, 1819392, 193687281, 5826740224, 86070703125, 803204128512, 5430309951577
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 24
[3] 0, 5, 176, 1539
[4] 0, 15, 1504, 25029, 193536
[5] 0, 52, 14528, 453438, 5558272, 40250000
[6] 0, 203, 155520, 9003879, 173490176, 1799296875, 12508380288
-
A350257 := (n, k) -> ifelse(n = 0, 1, k^n * BellB(n, k)):
seq(seq(A350257(n, k), k = 0..n), n = 0..7);
-
T[n_, k_] := k^n BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
A350258
Triangle read by rows. T(n, k) = k! * BellPolynomial(n, k).
Original entry on oeis.org
1, 0, 1, 0, 2, 12, 0, 5, 44, 342, 0, 15, 188, 1854, 18144, 0, 52, 908, 11196, 130272, 1545600, 0, 203, 4860, 74106, 1016544, 13818600, 193030560, 0, 877, 28428, 531378, 8535264, 132204600, 2065854240, 33232948560
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 12
[3] 0, 5, 44, 342
[4] 0, 15, 188, 1854, 18144
[5] 0, 52, 908, 11196, 130272, 1545600
[6] 0, 203, 4860, 74106, 1016544, 13818600, 193030560
[7] 0, 877, 28428, 531378, 8535264, 132204600, 2065854240, 33232948560
-
A350258 := (n, k) -> ifelse(n = 0, 1, k! * BellB(n, k)):
seq(seq(A350258(n, k), k = 0..n), n = 0..7);
-
T[n_, k_] := k! BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
A350259
Triangle read by rows. T(n, k) = n! * BellPolynomial(n, k).
Original entry on oeis.org
1, 0, 1, 0, 4, 12, 0, 30, 132, 342, 0, 360, 2256, 7416, 18144, 0, 6240, 54480, 223920, 651360, 1545600, 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560, 0, 4420080, 71638560, 446357520, 1792405440, 5552593200, 14460979680, 33232948560
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 4, 12
[3] 0, 30, 132, 342
[4] 0, 360, 2256, 7416, 18144
[5] 0, 6240, 54480, 223920, 651360, 1545600
[6] 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560
-
A350259 := (n, k) -> ifelse(n = 0, 1, n! * BellB(n, k)):
seq(seq(A350259(n, k), k = 0..n), n = 0..7);
-
T[n_, k_] := n! BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A350260
Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, 1/k) for k > 0, if k = 0 then T(n, k) = k^n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 5, 11, 19, 0, 15, 49, 109, 201, 0, 52, 257, 742, 1657, 3176, 0, 203, 1539, 5815, 15821, 35451, 69823, 0, 877, 10299, 51193, 170389, 447981, 1007407, 2026249, 0, 4140, 75905, 498118, 2032785, 6282416, 16157905, 36458010, 74565473
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 3
[3] 0, 5, 11, 19
[4] 0, 15, 49, 109, 201
[5] 0, 52, 257, 742, 1657, 3176
[6] 0, 203, 1539, 5815, 15821, 35451, 69823
[7] 0, 877, 10299, 51193, 170389, 447981, 1007407, 2026249
[8] 0, 4140, 75905, 498118, 2032785, 6282416, 16157905, 36458010, 74565473
-
A350260 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, 1/k)):
seq(seq(A350260(n, k), k = 0..n), n = 0..8);
-
T[n_, k_] := If[k == 0, k^n, k^n BellB[n, 1/k]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A350261
Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, -1/k) for k > 0, if k = 0 then T(n, k) = k^n.
Original entry on oeis.org
1, 0, -1, 0, 0, -1, 0, 1, 1, -1, 0, 1, 9, 19, 25, 0, -2, 23, 128, 343, 674, 0, -9, -25, 379, 2133, 6551, 15211, 0, -9, -583, -1549, 3603, 33479, 123821, 331827, 0, 50, -3087, -32600, -112975, -174114, 120865, 1619108, 5987745
Offset: 0
Triangle starts:
[0] 1
[1] 0, -1
[2] 0, 0, -1
[3] 0, 1, 1, -1
[4] 0, 1, 9, 19, 25
[5] 0, -2, 23, 128, 343, 674
[6] 0, -9, -25, 379, 2133, 6551, 15211
[7] 0, -9, -583, -1549, 3603, 33479, 123821, 331827
[8] 0, 50, -3087, -32600, -112975, -174114, 120865, 1619108, 5987745
-
A350261 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, -1/k)):
seq(seq(A350261(n, k), k = 0..n), n = 0..8);
-
T[n_, k_] := If[k == 0, k^n, k^n BellB[n, -1/k]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A350262
Triangle read by rows. T(n, k) = B(n, n - k + 1) where B(n, k) = k^n * BellPolynomial(n, -1/k) for k > 0, if k = 0 then B(n, k) = k^n.
Original entry on oeis.org
1, -1, -1, -2, -1, 0, -5, -1, 1, 1, 21, 25, 19, 9, 1, 1103, 674, 343, 128, 23, -2, 29835, 15211, 6551, 2133, 379, -25, -9, 739751, 331827, 123821, 33479, 3603, -1549, -583, -9, 16084810, 5987745, 1619108, 120865, -174114, -112975, -32600, -3087, 50
Offset: 0
[0] 1
[1] -1, -1
[2] -2, -1, 0
[3] -5, -1, 1, 1
[4] 21, 25, 19, 9, 1
[5] 1103, 674, 343, 128, 23, -2
[6] 29835, 15211, 6551, 2133, 379, -25, -9
[7] 739751, 331827, 123821, 33479, 3603, -1549, -583, -9
[8] 16084810, 5987745, 1619108, 120865, -174114, -112975, -32600, -3087, 50
-
B := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, -1/k)):
A350262 := (n, k) -> B(n, n - k + 1):
seq(seq(A350262(n, k), k = 0..n), n = 0..8);
-
B[n_, k_] := If[k == 0, k^n, k^n BellB[n, -1/k]]; T[n_, k_] := B[n, n - k + 1];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
Showing 1-8 of 8 results.