cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A350257 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, k).

Original entry on oeis.org

1, 0, 1, 0, 2, 24, 0, 5, 176, 1539, 0, 15, 1504, 25029, 193536, 0, 52, 14528, 453438, 5558272, 40250000, 0, 203, 155520, 9003879, 173490176, 1799296875, 12508380288, 0, 877, 1819392, 193687281, 5826740224, 86070703125, 803204128512, 5430309951577
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0,   1
[2] 0,   2,      24
[3] 0,   5,     176,     1539
[4] 0,  15,    1504,    25029,     193536
[5] 0,  52,   14528,   453438,    5558272,    40250000
[6] 0, 203,  155520,  9003879,  173490176,  1799296875, 12508380288
		

Crossrefs

Programs

  • Maple
    A350257 := (n, k) -> ifelse(n = 0, 1, k^n * BellB(n, k)):
    seq(seq(A350257(n, k), k = 0..n), n = 0..7);
  • Mathematica
    T[n_, k_] := k^n BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten

A350258 Triangle read by rows. T(n, k) = k! * BellPolynomial(n, k).

Original entry on oeis.org

1, 0, 1, 0, 2, 12, 0, 5, 44, 342, 0, 15, 188, 1854, 18144, 0, 52, 908, 11196, 130272, 1545600, 0, 203, 4860, 74106, 1016544, 13818600, 193030560, 0, 877, 28428, 531378, 8535264, 132204600, 2065854240, 33232948560
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0,   1
[2] 0,   2,    12
[3] 0,   5,    44,    342
[4] 0,  15,   188,   1854,   18144
[5] 0,  52,   908,  11196,  130272,   1545600
[6] 0, 203,  4860,  74106, 1016544,  13818600,  193030560
[7] 0, 877, 28428, 531378, 8535264, 132204600, 2065854240, 33232948560
		

Crossrefs

Programs

  • Maple
    A350258 := (n, k) -> ifelse(n = 0, 1, k! * BellB(n, k)):
    seq(seq(A350258(n, k), k = 0..n), n = 0..7);
  • Mathematica
    T[n_, k_] := k! BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten

A350259 Triangle read by rows. T(n, k) = n! * BellPolynomial(n, k).

Original entry on oeis.org

1, 0, 1, 0, 4, 12, 0, 30, 132, 342, 0, 360, 2256, 7416, 18144, 0, 6240, 54480, 223920, 651360, 1545600, 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560, 0, 4420080, 71638560, 446357520, 1792405440, 5552593200, 14460979680, 33232948560
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0,      1
[2] 0,      4,      12
[3] 0,     30,     132,     342
[4] 0,    360,    2256,    7416,    18144
[5] 0,   6240,   54480,  223920,   651360,  1545600
[6] 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560
		

Crossrefs

Programs

  • Maple
    A350259 := (n, k) -> ifelse(n = 0, 1, n! * BellB(n, k)):
    seq(seq(A350259(n, k), k = 0..n), n = 0..7);
  • Mathematica
    T[n_, k_] := n! BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

A350260 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, 1/k) for k > 0, if k = 0 then T(n, k) = k^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 5, 11, 19, 0, 15, 49, 109, 201, 0, 52, 257, 742, 1657, 3176, 0, 203, 1539, 5815, 15821, 35451, 69823, 0, 877, 10299, 51193, 170389, 447981, 1007407, 2026249, 0, 4140, 75905, 498118, 2032785, 6282416, 16157905, 36458010, 74565473
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0,    1
[2] 0,    2,     3
[3] 0,    5,    11,     19
[4] 0,   15,    49,    109,     201
[5] 0,   52,   257,    742,    1657,    3176
[6] 0,  203,  1539,   5815,   15821,   35451,    69823
[7] 0,  877, 10299,  51193,  170389,  447981,  1007407,  2026249
[8] 0, 4140, 75905, 498118, 2032785, 6282416, 16157905, 36458010, 74565473
		

Crossrefs

Programs

  • Maple
    A350260 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, 1/k)):
    seq(seq(A350260(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_, k_] := If[k == 0, k^n, k^n BellB[n, 1/k]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

A350262 Triangle read by rows. T(n, k) = B(n, n - k + 1) where B(n, k) = k^n * BellPolynomial(n, -1/k) for k > 0, if k = 0 then B(n, k) = k^n.

Original entry on oeis.org

1, -1, -1, -2, -1, 0, -5, -1, 1, 1, 21, 25, 19, 9, 1, 1103, 674, 343, 128, 23, -2, 29835, 15211, 6551, 2133, 379, -25, -9, 739751, 331827, 123821, 33479, 3603, -1549, -583, -9, 16084810, 5987745, 1619108, 120865, -174114, -112975, -32600, -3087, 50
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			[0]        1
[1]       -1,      -1
[2]       -2,      -1,       0
[3]       -5,      -1,       1,      1
[4]       21,      25,      19,      9,       1
[5]     1103,     674,     343,    128,      23,      -2
[6]    29835,   15211,    6551,   2133,     379,     -25,     -9
[7]   739751,  331827,  123821,  33479,    3603,   -1549,   -583,    -9
[8] 16084810, 5987745, 1619108, 120865, -174114, -112975, -32600, -3087, 50
		

Crossrefs

Programs

  • Maple
    B := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, -1/k)):
    A350262 := (n, k) -> B(n, n - k + 1):
    seq(seq(A350262(n, k), k = 0..n), n = 0..8);
  • Mathematica
    B[n_, k_] := If[k == 0, k^n, k^n BellB[n, -1/k]]; T[n_, k_] := B[n, n - k + 1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
Showing 1-5 of 5 results.