cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A301419 a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).

Original entry on oeis.org

1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 20 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->n^(n-k)*Stirling2(n,k))); # Muniru A Asiru, Mar 20 2018
    
  • Mathematica
    Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
    Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
    (* Or: *)
    A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
    Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
  • PARI
    a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018

Formula

a(n) = n! * [x^n] exp((exp(n*x) - 1)/n), for n > 0.
a(n) = Sum_{k=0..n} n^(n-k)*Stirling2(n,k).
a(n) = n^n * BellPolynomial(n, 1/n) for n >= 1. - Peter Luschny, Dec 22 2021
a(n) ~ exp(n/LambertW(n^2) - n) * n^(2*n) / (sqrt(1 + LambertW(n^2)) * LambertW(n^2)^n). - Vaclav Kotesovec, Jun 06 2022

A309386 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} (-k)^(n-j)*Stirling2(n,j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, 1, 1, 1, -3, 1, 9, 2, 1, 1, 1, -4, 5, 19, -23, -9, 1, 1, 1, -5, 11, 25, -128, -25, 9, 1, 1, 1, -6, 19, 21, -343, 379, 583, 50, 1, 1, 1, -7, 29, 1, -674, 2133, 1549, -3087, -267, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,    1,    1,     1, ...
   1,  1,   1,    1,    1,    1,     1, ...
   1,  0,  -1,   -2,   -3,   -4,    -5, ...
   1, -1,  -1,    1,    5,   11,    19, ...
   1,  1,   9,   19,   25,   21,     1, ...
   1,  2, -23, -128, -343, -674, -1103, ...
   1, -9, -25,  379, 2133, 6551, 15211, ...
		

Crossrefs

Columns k=0..6 give A000012, (-1)^n * A000587(n), A009235, A317996, A318179, A318180, A318181.
Rows n=0+1, 2 give A000012, A024000.
Main diagonal gives A318183.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * StirlingS2[n, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 07 2021 *)

Formula

E.g.f. of column k: exp((1 - exp(-k*x))/k) for k > 0.
A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} (-k)^(n-1-j) * binomial(n-1,j) * A(j,k) for n > 0.

A350261 Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, -1/k) for k > 0, if k = 0 then T(n, k) = k^n.

Original entry on oeis.org

1, 0, -1, 0, 0, -1, 0, 1, 1, -1, 0, 1, 9, 19, 25, 0, -2, 23, 128, 343, 674, 0, -9, -25, 379, 2133, 6551, 15211, 0, -9, -583, -1549, 3603, 33479, 123821, 331827, 0, 50, -3087, -32600, -112975, -174114, 120865, 1619108, 5987745
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0, -1
[2] 0,  0,    -1
[3] 0,  1,     1,     -1
[4] 0,  1,     9,     19,      25
[5] 0, -2,    23,    128,     343,     674
[6] 0, -9,   -25,    379,    2133,    6551,  15211
[7] 0, -9,  -583,  -1549,    3603,   33479, 123821,  331827
[8] 0, 50, -3087, -32600, -112975, -174114, 120865, 1619108, 5987745
		

Crossrefs

Programs

  • Maple
    A350261 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, -1/k)):
    seq(seq(A350261(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_, k_] := If[k == 0, k^n, k^n BellB[n, -1/k]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

A349731 a(n) = -(-n)^n * FallingFactorial(1/n, n) for n >= 1 and a(0) = -1.

Original entry on oeis.org

-1, 1, 1, 10, 231, 9576, 623645, 58715280, 7547514975, 1270453824640, 271252029133449, 71635824470246400, 22929813173612997575, 8747686347650933760000, 3921812703436118765113125, 2041590849971133677650610176, 1221367737152989777782325269375, 832163138229382457228044554240000
Offset: 0

Views

Author

Peter Luschny, Dec 21 2021

Keywords

Crossrefs

The main diagonal of A349971 for n >= 1.
The Stirling set counterpart is A318183.

Programs

  • Magma
    [-1,1] cat [Round(n^(n-1)*Gamma((n^2-1)/n)/Gamma((n-1)/n)): n in [2..30]]; // G. C. Greubel, Feb 22 2022
  • Maple
    A349731 := n -> -add((-1)^(n-k)*Stirling1(n, n-k)*(-n)^k, k = 0..n):
    seq(A349731(n), n = 0..17);
  • Mathematica
    a[0] = -1; a[n_] := -(-n)^n * FactorialPower[1/n, n]; Array[a, 18, 0] (* Amiram Eldar, Dec 21 2021 *)
  • Python
    from sympy import ff
    from fractions import Fraction
    def A349731(n): return -1 if n == 0 else -(-n)**n*ff(Fraction(1,n),n) # Chai Wah Wu, Dec 21 2021
    
  • SageMath
    def a(n): return -(-n)^n*falling_factorial(1/n, n) if n > 0 else -1
    print([a(n) for n in (1..17)])
    

Formula

a(n) = -(-1)^n*Sum_{k=0..n}[n, n-k]*(-n)^k, where [n, k] denotes the Stirling cycle numbers A132393(n, k).

A334193 a(0) = 1; thereafter a(n) = exp(1/n) * Sum_{k>=0} (n*k + 1)^n / ((-n)^k * k!).

Original entry on oeis.org

1, 0, -2, -9, -16, 625, 21384, 571438, 13471744, 188661555, -9794500000, -1476328587789, -134710712340480, -10664210861777200, -744650964057237888, -37832162051689453125, 831929248561267474432, 725944099523076464203157, 167435684777981700601449984
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Sum[(-x/(1 - x))^k/Product[(1 - n j x/(1 - x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
    Join[{1}, Table[n! SeriesCoefficient[Exp[x + (1 - Exp[n x])/n], {x, 0, n}], {n, 1, 18}]]
    Join[{1}, Table[Sum[Binomial[n, k]*n^k*BellB[k, -1/n], {k, 0, n}], {n, 1, 18}]] (* Vaclav Kotesovec, Apr 18 2020 *)

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (-x/(1 - x))^k / Product_{j=1..k} (1 - n*j*x/(1 - x)).
a(n) = n! * [x^n] exp(x + (1 - exp(n*x)) / n), for n > 0.
a(n) = A334192(n,n).

A355373 a(n) = Sum_{k=0..n} k! * (-1)^k * n^(n-k) * Stirling2(n,k).

Original entry on oeis.org

1, -1, 0, 3, 40, 455, 2016, -177373, -11564160, -497664081, -12796467200, 536297904659, 132025634657280, 14907422733429239, 1181852660381503488, 34684559693802943875, -11771644802057621110784, -3553614228958108389522721, -656899368126170250221715456
Offset: 0

Views

Author

Seiichi Manyama, Jun 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k! * (-1)^k * n^(n - k) * StirlingS2[n, k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Jun 30 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*(-1)^k*n^(n-k)*stirling(n, k, 2));

Formula

a(n) = n! * [x^n] n/(n - 1 + exp(n*x)) for n > 0.

A355375 a(n) = Sum_{k=0..n} (-k)^(n-k) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 0, -4, 10, 67, -969, 3341, 86976, -1988704, 14144108, 405611857, -17544321563, 287677263837, 3595470378748, -421298868094940, 14476946230894114, -112253861285434961, -18711849695261432065, 1354595712379990848137, -44436925726445545236496
Offset: 0

Views

Author

Seiichi Manyama, Jun 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-k)^(n - k) * StirlingS2[n, k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Jun 30 2022 *)
  • PARI
    a(n) = sum(k=0, n, (-k)^(n-k)*stirling(n, k, 2));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (1-exp(-k*x))^k/(k^k*k!))))

Formula

E.g.f.: Sum_{k>=0} (1 - exp(-k * x))^k / (k^k * k!).
Showing 1-7 of 7 results.