cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349971 Array read by ascending antidiagonals, A(n, k) = -(-n)^k*FallingFactorial(1/n, k) for n, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 15, 0, 1, 4, 21, 80, 105, 0, 1, 5, 36, 231, 880, 945, 0, 1, 6, 55, 504, 3465, 12320, 10395, 0, 1, 7, 78, 935, 9576, 65835, 209440, 135135, 0, 1, 8, 105, 1560, 21505, 229824, 1514205, 4188800, 2027025, 0
Offset: 1

Views

Author

Peter Luschny, Dec 21 2021

Keywords

Examples

			Array starts:
[1] 1, 0,   0,    0,      0,       0,         0,           0, ... A000007
[2] 1, 1,   3,   15,    105,     945,     10395,      135135, ... A001147
[3] 1, 2,  10,   80,    880,   12320,    209440,     4188800, ... A008544
[4] 1, 3,  21,  231,   3465,   65835,   1514205,    40883535, ... A008545
[5] 1, 4,  36,  504,   9576,  229824,   6664896,   226606464, ... A008546
[6] 1, 5,  55,  935,  21505,  623645,  21827575,   894930575, ... A008543
[7] 1, 6,  78, 1560,  42120, 1432080,  58715280,  2818333440, ... A049209
[8] 1, 7, 105, 2415,  74865, 2919735, 137227545,  7547514975, ... A049210
[9] 1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, ... A049211
Triangle starts:
[1] [1]
[2] [1, 0]
[3] [1, 1,  0]
[4] [1, 2,  3,   0]
[5] [1, 3, 10,  15,    0]
[6] [1, 4, 21,  80,  105,     0]
[7] [1, 5, 36, 231,  880,   945,      0]
[8] [1, 6, 55, 504, 3465, 12320,  10395,      0]
[9] [1, 7, 78, 935, 9576, 65835, 209440, 135135, 0]
		

Crossrefs

Programs

  • Magma
    [k eq n select 0^(n-1) else Round((n-k+1)^(k-1)*Gamma(k-1 + (n-k)/(n-k+1))/Gamma((n-k)/(n-k+1))): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 22 2022
  • Mathematica
    A[n_, k_] := -(-n)^k * FactorialPower[1/n, k]; Table[A[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 21 2021 *)
  • SageMath
    def A(n, k): return -(-n)^k*falling_factorial(1/n, k)
    def T(n, k): return A(n-k+1, k)
    for n in (1..9): print([A(n, k) for k in (1..8)])
    for n in (1..9): print([T(n, k) for k in (1..n)])
    

Formula

From G. C. Greubel, Feb 22 2022: (Start)
A(n, k) = n^(k-1)*Pochhammer((n-1)/n, k-1) (array).
T(n, k) = (n-k+1)^(k-1)*Pochhammer((n-k)/(n-k+1), k-1) (antidiagonal triangle).
T(2*n, n) = (-1)^(n-1)*A158886(n). (End)

A354752 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * n^(n-k).

Original entry on oeis.org

1, 1, 0, 6, -152, 6670, -451152, 43685208, -5741360256, 984176280288, -213379094227200, 57100689621382176, -18489130293293779968, 7125765731670143814672, -3223822934974620319272960, 1692009521117003600170128000, -1019755541584493644326799048704
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[StirlingS1[n, k] k! n^(n - k), {k, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n! SeriesCoefficient[1/(1 - Log[1 + n x]/n), {x, 0, n}], {n, 1, 16}]]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1) * k! * n^(n-k)); \\ Michel Marcus, Jun 06 2022

Formula

a(n) = n! * [x^n] 1 / (1 - log(1 + n*x) / n) for n > 0.
a(n) ~ (-1)^(n+1) * n! * n^(n-2). - Vaclav Kotesovec, Jun 06 2022
Showing 1-2 of 2 results.