cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355764 E.g.f. satisfies log(A(x)) = (1 - exp(-x*A(x))) * A(x)^2.

Original entry on oeis.org

1, 1, 6, 77, 1533, 41547, 1427789, 59501185, 2916185862, 164377512831, 10477134939301, 745130845917317, 58499605416732225, 5025399546258317683, 468897159717886522970, 47222645752129576973609, 5105611277081800029406545, 589843003782904742592169479
Offset: 0

Views

Author

Seiichi Manyama, Jul 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(n+2*k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+2*k+1)^(k-1) * Stirling2(n,k).

A355765 E.g.f. satisfies A(x)^2 * log(A(x)) = 1 - exp(-x*A(x)).

Original entry on oeis.org

1, 1, -2, 5, -27, 307, -4403, 71353, -1333090, 28816647, -709090995, 19516306141, -593330123807, 19747569261851, -714304238263502, 27903505800651169, -1170716239531658759, 52503701213718494671, -2506483879112555156467, 126905975195788734150405
Offset: 0

Views

Author

Seiichi Manyama, Jul 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(n-2*k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (n-2*k+1)^(k-1) * Stirling2(n,k).
Showing 1-2 of 2 results.