cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A242817 a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).

Original entry on oeis.org

1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
Offset: 0

Views

Author

Emanuele Munarini, May 23 2014

Keywords

Crossrefs

Main diagonal of A189233 and of A292860.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, (1+
          add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 17 2016
  • Mathematica
    Table[BellB[n, n], {n, 0, 100}]
  • Maxima
    a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n);
    makelist(a(n),n,0,30);
    
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ Michel Marcus, Apr 20 2016

Formula

E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018

Extensions

Name corrected by Pontus von Brömssen, Dec 05 2020

A292861 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*(1 - exp(x))).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 1, 0, 1, -4, 6, 2, 1, 0, 1, -5, 12, -3, -6, -2, 0, 1, -6, 20, -20, -21, -14, -9, 0, 1, -7, 30, -55, -20, 24, 26, -9, 0, 1, -8, 42, -114, 45, 172, 195, 178, 50, 0, 1, -9, 56, -203, 246, 370, 108, -111, 90, 267, 0, 1, -10, 72, -328, 679, 318, -1105, -2388, -3072, -2382, 413, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1,     1,     1, ...
   0, -1,  -2,  -3,  -4,    -5,    -6, ...
   0,  0,   2,   6,  12,    20,    30, ...
   0,  1,   2,  -3, -20,   -55,  -114, ...
   0,  1,  -6, -21, -20,    45,   246, ...
   0, -2, -14,  24, 172,   370,   318, ...
   0, -9,  26, 195, 108, -1105, -4074, ...
		

Crossrefs

Columns k=0..4 give A000007, A000587, A213170, A309084, A309085.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292866.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    A[n_, k_] := Sum[(-k)^j StirlingS2[n, j], {j, 0, n}];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 10 2021 *)
    A292861[n_, k_] := BellB[k, k - n];
    Table[A292861[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)

Formula

A(0,k) = 1 and A(n,k) = -k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} (-k)^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, -k). - Peter Luschny, Dec 23 2021

A357681 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * (exp(x) - 1) ).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 3, 6, 8, 0, 1, 0, 4, 9, 18, 25, 0, 1, 0, 5, 12, 30, 70, 97, 0, 1, 0, 6, 15, 44, 135, 330, 434, 0, 1, 0, 7, 18, 60, 220, 705, 1694, 2095, 0, 1, 0, 8, 21, 78, 325, 1228, 3906, 9202, 10707, 0, 1, 0, 9, 24, 98, 450, 1905, 7196, 22953, 53334, 58194, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2022

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1, ...
  0,  0,  0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5, ...
  0,  3,  6,   9,  12,  15, ...
  0,  8, 18,  30,  44,  60, ...
  0, 25, 70, 135, 220, 325, ...
		

Crossrefs

Columns k=0-4 give: A000007, A024430, A264036, A357615, A065143.
Column k=9 gives A357667.
Main diagonal gives A357682.
Cf. A292860.

Programs

  • PARI
    T(n, k) = sum(j=0, n\2, k^j*stirling(n, 2*j, 2));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = round((Bell_poly(n, sqrt(k))+Bell_poly(n, -sqrt(k))))/2;

Formula

T(n,k) = Sum_{j=0..floor(n/2)} k^j * Stirling2(n,2*j).
T(n,k) = ( Bell_n(sqrt(k)) + Bell_n(-sqrt(k)) )/2, where Bell_n(x) is n-th Bell polynomial.

A350256 Triangle read by rows. T(n, k) = BellPolynomial(n, k).

Original entry on oeis.org

1, 0, 1, 0, 2, 6, 0, 5, 22, 57, 0, 15, 94, 309, 756, 0, 52, 454, 1866, 5428, 12880, 0, 203, 2430, 12351, 42356, 115155, 268098, 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839, 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle begins:
[0] 1
[1] 0,    1
[2] 0,    2,     6
[3] 0,    5,    22,     57
[4] 0,   15,    94,    309,     756
[5] 0,   52,   454,   1866,    5428,    12880
[6] 0,  203,  2430,  12351,   42356,   115155,   268098
[7] 0,  877, 14214,  88563,  355636,  1101705,  2869242,  6593839
[8] 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
		

Crossrefs

Cf. A242817 (main diagonal), A000110 (column 1), A350264 (row sums), A350263 (Bell(n,-k)), A189233 and A292860 (array).

Programs

  • Maple
    A350256 := (n, k) -> ifelse(n = 0, 1, BellB(n, k)):
    seq(seq(A350256(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_, k_] := BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

A351761 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2022

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  0,    1,     2,     3,      4,      5, ...
  0,    4,    12,    24,     40,     60, ...
  0,   21,   102,   279,    588,   1065, ...
  0,  148,  1160,  4332,  11536,  25220, ...
  0, 1305, 16490, 84075, 282900, 746525, ...
		

Crossrefs

Columns k=0..3 give A000007, A006153, A351762, A351763.
Main diagonal gives A351765.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
    
  • PARI
    T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));

Formula

E.g.f. of column k: 1/(1 - k*x*exp(x)).
T(0,k) = 1 and T(n,k) = k * n * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.

A299824 a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)!.

Original entry on oeis.org

2, 22, 309, 5428, 115155, 2869242, 82187658, 2661876168, 96202473183, 3838516103310, 167606767714397, 7949901069639228, 407048805012563038, 22376916254447538882, 1314573505901491675965, 82188946843192555474704, 5448870914168179374456623, 381819805747937892412056342
Offset: 1

Views

Author

Pedro Caceres, Feb 19 2018

Keywords

Comments

For m>1, A242817(m) and a(m-1) are also the m-th and (m+1)-st terms of the sequences "Number of ways of placing X labeled balls into X unlabeled (but (m-1)-colored) boxes". For instance, sequence A144180 for 5-colored boxes (m = 6), has A144180(6) = 12880, and A144180(7) = 115155, which are A242817(6) and a(5) respectively. Same pattern can be observed for A027710, A144223, A144263 (comment added after Omar E. Pol's formula).

Examples

			a(4) = (1/e^4)*Sum_{j >= 1} j^4 * 4^j / (j-1)! = 5428.
		

Crossrefs

Programs

  • PARI
    a(n) = round(exp(-n)*suminf(j = 1, (j^n)*(n^j)/(j-1)!)); \\ Michel Marcus, Feb 24 2018
    
  • PARI
    A299824(n,f=exp(n),S=n/f,t)=for(j=2,oo,S+=(t=j^n*n^j)/(f*=j-1);tn&&return(ceil(S))) \\ For n > 23, use \p## with some ## >= 2n. - M. F. Hasler, Mar 09 2018

Formula

a(n) = A189233(n+1,n). - Omar E. Pol, Feb 24 2018
a(n) ~ exp(n/LambertW(1) - 2*n) * n^(n + 1) / (sqrt(1 + LambertW(1)) * LambertW(1)^(n + 1)). - Vaclav Kotesovec, Mar 08 2018
Or: a(n) ~ (1/sqrt(1+w)) * exp(1/w-2)^n * (n/w)^(n+1), with w = LambertW(1) ~ 0.56714329... The relative error decreases from 10^-2 for a(2) to 10^-3 for a(15), but reaches 10^-3.5 only at a(45). - M. F. Hasler, Mar 09 2018

A335975 Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1) + x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 15, 1, 1, 5, 19, 47, 52, 1, 1, 6, 29, 103, 227, 203, 1, 1, 7, 41, 189, 622, 1215, 877, 1, 1, 8, 55, 311, 1357, 4117, 7107, 4140, 1, 1, 9, 71, 475, 2576, 10589, 29521, 44959, 21147, 1, 1, 10, 89, 687, 4447, 23031, 88909, 227290, 305091, 115975, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2020

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1,      1, ...
  1,   2,    3,     4,     5,      6,      7, ...
  1,   5,   11,    19,    29,     41,     55, ...
  1,  15,   47,   103,   189,    311,    475, ...
  1,  52,  227,   622,  1357,   2576,   4447, ...
  1, 203, 1215,  4117, 10589,  23031,  44683, ...
  1, 877, 7107, 29521, 88909, 220341, 478207, ...
		

Crossrefs

Columns k=0-4 give: A000012, A000110(n+1), A035009(n+1), A078940, A078945.
Main diagonal gives A334240.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := T[n - 1, k] + k * Sum[T[j, k] * Binomial[n - 1, j], {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Jul 03 2020 *)

Formula

T(0,k) = 1 and T(n,k) = T(n-1,k) + k * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.
T(n,k) = exp(-k) * Sum_{j>=0} (j + 1)^n * k^j / j!.

A346654 a(n) = Bell(2*n,n).

Original entry on oeis.org

1, 2, 94, 12351, 3188340, 1362057155, 869725707522, 775929767223352, 921839901090823112, 1406921223577401454239, 2682502220690005671884710, 6248503930824315386034050253, 17460431497766377837983159782652, 57647207262184459310081410522242310, 222006095854149044448961838142906736554
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jul 27 2021
  • Mathematica
    Table[BellB[2*n, n], {n, 0, 20}]

Formula

a(n) ~ 4^n * exp((2/LambertW(2) - 3)*n) * n^(2*n) / (sqrt(1 + LambertW(2)) * LambertW(2)^(2*n)).
a(n) = A189233(2n,n) = A292860(2n,n). - Alois P. Heinz, Jul 27 2021

A346655 a(n) = Bell(3*n,n).

Original entry on oeis.org

1, 5, 2430, 5597643, 35618229364, 483040313859705, 11977437107679230274, 490630568583958198181583, 30889771581097736768046865352, 2832037863467651034046820871428061, 362579939205426756198837321528946171110, 62687814132880422794200073791149602981717667
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2021

Keywords

Comments

In general, for k>=1, Bell(k*n,n) ~ (k*n/LambertW(k))^(k*n) / (sqrt(1 + LambertW(k)) * exp(n*(k + 1 - k/LambertW(k)))).

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> b(3*n, n):
    seq(a(n), n=0..11);  # Alois P. Heinz, Jul 27 2021
  • Mathematica
    Table[BellB[3*n, n], {n, 0, 15}]

Formula

a(n) ~ (3*n/LambertW(3))^(3*n) / (sqrt(1 + LambertW(3)) * exp(n*(4 - 3/LambertW(3)))).
a(n) = A189233(3n,n) = A292860(3n,n). - Alois P. Heinz, Jul 27 2021

A343263 a(0) = 1; a(n+1) = exp(-a(n)) * Sum_{k>=0} a(n)^k * k^n / k!.

Original entry on oeis.org

1, 1, 1, 2, 22, 301554, 2493675105669492542968967478
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2021

Keywords

Comments

The next term is too large to include.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[StirlingS2[n - 1, k] a[n - 1]^k, {k, 0, n - 1}]; Table[a[n], {n, 0, 6}]
    a[0] = 1; a[n_] := a[n] = BellB[n - 1, a[n - 1]]; Table[a[n], {n, 0, 6}]

Formula

a(0) = 1; a(n+1) = n! * [x^n] exp(a(n) * (exp(x) - 1)).
a(0) = 1; a(n+1) = Sum_{k=0..n} Stirling2(n,k) * a(n)^k.
Showing 1-10 of 10 results.