A351762
Expansion of e.g.f. 1/(1 - 2*x*exp(x)).
Original entry on oeis.org
1, 2, 12, 102, 1160, 16490, 281292, 5598110, 127326096, 3257961426, 92625793940, 2896747456262, 98827517418456, 3652643136982970, 145385563800940764, 6200097935648462190, 282035994269804870432, 13631368700936950044578, 697586352315912913754916
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*x*exp(x))))
-
a(n) = n!*sum(k=0, n, 2^(n-k)*(n-k)^k/k!);
-
a(n) = if(n==0, 1, 2*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));
A351703
Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).
Original entry on oeis.org
1, 1, 1, 1, 0, 4, 1, 0, 1, 21, 1, 0, 0, 3, 148, 1, 0, 0, 1, 12, 1305, 1, 0, 0, 0, 4, 70, 13806, 1, 0, 0, 0, 1, 10, 465, 170401, 1, 0, 0, 0, 0, 5, 40, 3591, 2403640, 1, 0, 0, 0, 0, 1, 15, 315, 31948, 38143377, 1, 0, 0, 0, 0, 0, 6, 35, 2296, 319068, 672552730
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, ...
4, 1, 0, 0, 0, 0, ...
21, 3, 1, 0, 0, 0, ...
148, 12, 4, 1, 0, 0, ...
1305, 70, 10, 5, 1, 0, ...
13806, 465, 40, 15, 6, 1, ...
-
T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k)));
-
T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022
A351776
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * (n-j)^j/j!.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 4, 3, 0, 1, -4, 12, -6, -4, 0, 1, -5, 24, -63, -8, -25, 0, 1, -6, 40, -204, 420, 150, 114, 0, 1, -7, 60, -465, 2288, -3435, -972, 287, 0, 1, -8, 84, -882, 7180, -32020, 33462, 3682, -4152, 0, 1, -9, 112, -1491, 17256, -138525, 537576, -379155, 6256, 1647, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, 0, 4, 12, 24, 40, ...
0, 3, -6, -63, -204, -465, ...
0, -4, -8, 420, 2288, 7180, ...
0, -25, 150, -3435, -32020, -138525, ...
-
T(n, k) = n!*sum(j=0, n, (-k)^(n-j)*(n-j)^j/j!);
-
T(n, k) = if(n==0, 1, -k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));
A351765
a(n) = n! * Sum_{k=0..n} n^(n-k) * (n-k)^k/k!.
Original entry on oeis.org
1, 1, 12, 279, 11536, 746525, 69768036, 8902181575, 1487939919936, 315597946293657, 82839437215344100, 26366747854082944451, 10006618140321691249296, 4464690010732922712332149, 2313871692128866349730705924, 1378552938661073773617331110975
Offset: 0
-
Join[{1}, Table[n!*Sum[n^(n - k)*(n - k)^k/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Feb 19 2022 *)
-
a(n) = n!*sum(k=0, n, n^(n-k)*(n-k)^k/k!);
A351790
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (k * (n-j))^j/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 6, 21, 24, 1, 1, 8, 42, 148, 120, 1, 1, 10, 69, 392, 1305, 720, 1, 1, 12, 102, 780, 4600, 13806, 5040, 1, 1, 14, 141, 1336, 11145, 64752, 170401, 40320, 1, 1, 16, 186, 2084, 22200, 191178, 1063216, 2403640, 362880
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 4, 6, 8, 10, 12, ...
6, 21, 42, 69, 102, 141, ...
24, 148, 392, 780, 1336, 2084, ...
120, 1305, 4600, 11145, 22200, 39145, ...
-
T[n_, k_] := n!*(1 + Sum[(k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
-
T(n, k) = n!*sum(j=0, n, (k*(n-j))^j/j!);
-
T(n, k) = if(n==0, 1, n*sum(j=0, n-1, k^(n-1-j)*binomial(n-1, j)*T(j, k)));
A351763
Expansion of e.g.f. 1/(1 - 3*x*exp(x)).
Original entry on oeis.org
1, 3, 24, 279, 4332, 84075, 1958058, 53202387, 1652070696, 57713665779, 2240196853710, 95650311987483, 4455281606078988, 224815388384744859, 12216916158370619010, 711312392929267383075, 44176151714082889756368, 2915038701200389804440675
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*x*exp(x))))
-
a(n) = n!*sum(k=0, n, 3^(n-k)*(n-k)^k/k!);
-
a(n) = if(n==0, 1, 3*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));
Showing 1-6 of 6 results.