A351761
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 4, 12, 24, 40, 60, ...
0, 21, 102, 279, 588, 1065, ...
0, 148, 1160, 4332, 11536, 25220, ...
0, 1305, 16490, 84075, 282900, 746525, ...
-
T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
-
T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));
A275707
Number of partial functions f:{1,2,...,n}->{1,2,...,n} such that every element in the domain of definition of f is mapped to a fixed point or to an element that is undefined by f.
Original entry on oeis.org
1, 2, 8, 38, 216, 1402, 10156, 80838, 698704, 6498674, 64579284, 681642238, 7605025720, 89318058858, 1100376445564, 14176837311158, 190498308591264, 2663482511782114, 38667106019619748, 581765160424218606, 9055862445043643656, 145619330650420134362
Offset: 0
G.f. = 1 + 2*x + 8*x^2 + 38*x^3 + 216*x^4 + 1402*x^5 + 10156*x^6 + ...
a(2) = 8 because there are 9 = A000169(3) partial functions on a set with 2 elements and all of them have the stated property except 1->2,2->1.
-
a:= n-> add(binomial(n, k)*add(binomial(n-k, f)*
(f+k)^(n-k-f), f=0..n-k), k=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 07 2016
-
nn = 20; Range[0, nn]! CoefficientList[Series[ Exp[z Exp[z]]^2, {z, 0, nn}], z]
Table[Sum[BellY[n, k, 2 Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
x='x+O('x^33); Vec(serlaplace(exp(2*x*exp(x)))) \\ Joerg Arndt, Nov 10 2016
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
-
a(n) = sum(k=0, n, 2^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022
A368267
Expansion of e.g.f. exp(2*x) / (1 - 2*x*exp(x)).
Original entry on oeis.org
1, 4, 24, 206, 2344, 33322, 568420, 11312366, 257293872, 6583516946, 187173328444, 5853594770806, 199705444781512, 7381068971010074, 293787494031046740, 12528831526596461438, 569923490454177217120, 27545552296682691393058
Offset: 0
A352251
Expansion of e.g.f. 1 / (1 - x * sinh(x)) (even powers only).
Original entry on oeis.org
1, 2, 28, 966, 62280, 6452650, 980531916, 205438870014, 56760128400016, 19994672935658322, 8746764024725937300, 4651991306703670964518, 2956156902003429777549144, 2212026607642404922284728826, 1925137044528752884360406444380, 1928103808741894922401976601295950
Offset: 0
-
nmax = 30; Take[CoefficientList[Series[1/(1 - x Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
-
my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sinh(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022
A351777
Expansion of e.g.f. 1/(1 + 2*x*exp(x)).
Original entry on oeis.org
1, -2, 4, -6, -8, 150, -972, 3682, 6256, -289746, 3300460, -21071622, -27876312, 3156947014, -53217341660, 494232431250, 175171749088, -113735274256290, 2613309376750812, -32653995355358678, 36013529538641560, 10227377502146048118, -305630239215263764076
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1+2x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 06 2024 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+2*x*exp(x))))
-
a(n) = n!*sum(k=0, n, (-2)^(n-k)*(n-k)^k/k!);
-
a(n) = if(n==0, 1, -2*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));
A368268
Expansion of e.g.f. exp(-x) / (1 - 2*x*exp(x)).
Original entry on oeis.org
1, 1, 9, 71, 817, 11599, 197881, 3938087, 89569761, 2291869727, 65159228521, 2037767466679, 69521938950289, 2569515452879855, 102274007835523161, 4361566914028222919, 198403133940750790081, 9589223805173365594687, 490729273233730201604809
Offset: 0
A368269
Expansion of e.g.f. exp(-2*x) / (1 - 2*x*exp(x)).
Original entry on oeis.org
1, 0, 8, 46, 584, 8138, 139252, 2770206, 63009648, 1612255186, 45837395564, 1433503025414, 48906419204392, 1807570412699322, 71946432680652324, 3068220235065662062, 139570141248903198944, 6745706553985526731682, 345212056986241161670876
Offset: 0
Showing 1-7 of 7 results.