cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A351761 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2022

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  0,    1,     2,     3,      4,      5, ...
  0,    4,    12,    24,     40,     60, ...
  0,   21,   102,   279,    588,   1065, ...
  0,  148,  1160,  4332,  11536,  25220, ...
  0, 1305, 16490, 84075, 282900, 746525, ...
		

Crossrefs

Columns k=0..3 give A000007, A006153, A351762, A351763.
Main diagonal gives A351765.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
    
  • PARI
    T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));

Formula

E.g.f. of column k: 1/(1 - k*x*exp(x)).
T(0,k) = 1 and T(n,k) = k * n * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.

A275707 Number of partial functions f:{1,2,...,n}->{1,2,...,n} such that every element in the domain of definition of f is mapped to a fixed point or to an element that is undefined by f.

Original entry on oeis.org

1, 2, 8, 38, 216, 1402, 10156, 80838, 698704, 6498674, 64579284, 681642238, 7605025720, 89318058858, 1100376445564, 14176837311158, 190498308591264, 2663482511782114, 38667106019619748, 581765160424218606, 9055862445043643656, 145619330650420134362
Offset: 0

Views

Author

Geoffrey Critzer, Aug 06 2016

Keywords

Examples

			G.f. = 1 + 2*x + 8*x^2 + 38*x^3 + 216*x^4 + 1402*x^5 + 10156*x^6 + ...
a(2) = 8 because there are 9 = A000169(3) partial functions on a set with 2 elements and all of them have the stated property except 1->2,2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*add(binomial(n-k, f)*
            (f+k)^(n-k-f), f=0..n-k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 07 2016
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[ Exp[z Exp[z]]^2, {z, 0, nn}], z]
    Table[Sum[BellY[n, k, 2 Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(2*x*exp(x)))) \\ Joerg Arndt, Nov 10 2016
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022

Formula

E.g.f.: A(x)^2 = exp(2*B(x)) where A(x) is the e.g.f. for A000248 and B(x) is the e.g.f. for A000027.
E.g.f.: exp(2*x*exp(x)). - Joerg Arndt, Nov 10 2016
a(0) = 1; a(n) = Sum_{k=1..n} 2*k*binomial(n-1,k-1)*a(n-k). - Ilya Gutkovskiy, Nov 24 2017
From Seiichi Manyama, Jul 04 2022: (Start)
G.f.: Sum_{k>=0} (2 * x)^k/(1 - k*x)^(k+1).
a(n) = Sum_{k=0..n} 2^k * k^(n-k) * binomial(n,k). (End)
a(n) ~ n^(n + 1/2) * exp(2*r*exp(r) - r/2 - n) / (sqrt(2*(1 + 3*r + r^2)) * r^(n + 1/2)), where r = 2*w - 1/(2*w) + 5/(8*w^2) - 19/(24*w^3) + 209/(192*w^4) - 763/(480*w^5) + 4657/(1920*w^6) - 6855/(1792*w^7) + 199613/(32256*w^8) + ... and w = LambertW(sqrt(n)/2^(3/2)). - Vaclav Kotesovec, Jul 06 2022

A368267 Expansion of e.g.f. exp(2*x) / (1 - 2*x*exp(x)).

Original entry on oeis.org

1, 4, 24, 206, 2344, 33322, 568420, 11312366, 257293872, 6583516946, 187173328444, 5853594770806, 199705444781512, 7381068971010074, 293787494031046740, 12528831526596461438, 569923490454177217120, 27545552296682691393058
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^(n-k)*(n-k+2)^k/k!);

Formula

a(n) = n! * Sum_{k=0..n} 2^(n-k) * (n-k+2)^k / k!.
a(n) ~ n! / (4 * LambertW(1/2)^(n+2) * (LambertW(1/2) + 1)). - Vaclav Kotesovec, Dec 29 2023

A352251 Expansion of e.g.f. 1 / (1 - x * sinh(x)) (even powers only).

Original entry on oeis.org

1, 2, 28, 966, 62280, 6452650, 980531916, 205438870014, 56760128400016, 19994672935658322, 8746764024725937300, 4651991306703670964518, 2956156902003429777549144, 2212026607642404922284728826, 1925137044528752884360406444380, 1928103808741894922401976601295950
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; Take[CoefficientList[Series[1/(1 - x Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
    a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
  • PARI
    my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sinh(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022

Formula

a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(2*n,2*k) * k * a(n-k).

A351777 Expansion of e.g.f. 1/(1 + 2*x*exp(x)).

Original entry on oeis.org

1, -2, 4, -6, -8, 150, -972, 3682, 6256, -289746, 3300460, -21071622, -27876312, 3156947014, -53217341660, 494232431250, 175171749088, -113735274256290, 2613309376750812, -32653995355358678, 36013529538641560, 10227377502146048118, -305630239215263764076
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2022

Keywords

Crossrefs

Column k=2 of A351776.
Cf. A351762.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1+2x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 06 2024 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+2*x*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-2)^(n-k)*(n-k)^k/k!);
    
  • PARI
    a(n) = if(n==0, 1, -2*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));

Formula

a(n) = n! * Sum_{k=0..n} (-2)^(n-k) * (n-k)^k/k!.
a(0) = 1 and a(n) = -2 * n * Sum_{k=0..n-1} binomial(n-1,k) * a(k) for n > 0.

A368268 Expansion of e.g.f. exp(-x) / (1 - 2*x*exp(x)).

Original entry on oeis.org

1, 1, 9, 71, 817, 11599, 197881, 3938087, 89569761, 2291869727, 65159228521, 2037767466679, 69521938950289, 2569515452879855, 102274007835523161, 4361566914028222919, 198403133940750790081, 9589223805173365594687, 490729273233730201604809
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^(n-k)*(n-k-1)^k/k!);

Formula

a(n) = n! * Sum_{k=0..n} 2^(n-k) * (n-k-1)^k / k!.

A368269 Expansion of e.g.f. exp(-2*x) / (1 - 2*x*exp(x)).

Original entry on oeis.org

1, 0, 8, 46, 584, 8138, 139252, 2770206, 63009648, 1612255186, 45837395564, 1433503025414, 48906419204392, 1807570412699322, 71946432680652324, 3068220235065662062, 139570141248903198944, 6745706553985526731682, 345212056986241161670876
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^(n-k)*(n-k-2)^k/k!);

Formula

a(n) = n! * Sum_{k=0..n} 2^(n-k) * (n-k-2)^k / k!.
Showing 1-7 of 7 results.