cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355501 Expansion of e.g.f. exp(3 * x * exp(x)).

Original entry on oeis.org

1, 3, 15, 90, 633, 5028, 44217, 424434, 4399953, 48858984, 577372809, 7221983838, 95192539641, 1317190650636, 19071213218745, 288112248054882, 4530217559806497, 73976635012027344, 1252091246140278153, 21926952634345281030, 396671314081806278601
Offset: 0

Views

Author

Seiichi Manyama, Jul 04 2022

Keywords

Crossrefs

Column 3 of A187105.
Cf. A351763.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3x Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(3*x*exp(x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*x)^k/(1-k*x)^(k+1)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, j*binomial(i-1, j-1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n, 3^k*k^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} (3 * x)^k/(1 - k*x)^(k+1).
a(0) = 1; a(n) = 3 * Sum_{k=1..n} k * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 3^k * k^(n-k) * binomial(n,k).
a(n) ~ n^(n + 1/2) * exp(3*r*exp(r) - r/2 - n) / (sqrt(3*(1 + 3*r + r^2)) * r^(n + 1/2)), where r = 2*w - 1/(2*w) + 5/(8*w^2) - 19/(24*w^3) + 209/(192*w^4) - 763/(480*w^5) + 4657/(1920*w^6) - 6855/(1792*w^7) + 199613/(32256*w^8) + ... and w = LambertW(sqrt(n/3)/2). - Vaclav Kotesovec, Jul 06 2022

A187105 Triangle T(n,k) read by rows: number of height-2-restricted finite functions.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 8, 3, 1, 41, 38, 15, 4, 1, 196, 216, 90, 24, 5, 1, 1057, 1402, 633, 172, 35, 6, 1, 6322, 10156, 5028, 1424, 290, 48, 7, 1, 41393, 80838, 44217, 13204, 2745, 450, 63, 8, 1, 293608, 698704, 424434, 134680, 28900, 4776, 658, 80, 9, 1
Offset: 1

Views

Author

Dennis P. Walsh, Mar 04 2011

Keywords

Comments

Triangle T(n,k) with 1 <= k <= n+1 is the number of functions f:[n+1-k]->[n+1] such that f(f(f(x))) is undefined, that is, either f(x) or f(f(x)) is in {n+2-k,...,n+1}. Such functions are called height-2 restricted functions. Note that the null function, which occurs when k=n+1, vacuously satisfies the conditions for a height-2 restricted function, and hence T(n,n+1)=1. The sequence a(n)=T(n,1) is sequence A000248, the number of forests with n nodes and height at most 1. The height of a function f:D->C, with D a proper subset of finite C, is the maximum h such that (f^h)(x) exists for some x in D. A height restricted function f is acyclic since, if x is in a cycle of f, then (f^z)(x) exists for all positive integers z. [Note that [m] denotes the set of the first m positive integers and that f^m denotes the m-fold self-composition of f so that (f^0)(x)=x, (f^1)(x)=f(x),(f^2)(x)=f(f(x)), etc.]

Examples

			Triangle of initial terms:
     1
     1     1
     3     2     1
    10     8     3     1
    41    38    15     4     1
   196   216    90    24     5     1
  1057  1402   633   172    35     6     1
T(4,3) = 15 since there are 15 functions f:[2]->[5] such that either f(x) or f(f(x)) is in {3,4,5}. Using <f(1),f(2)> to denote these functions we have the following 15 functions: <2,3>, <2,4>, <2,5>, <3,1>, <3,3>, <3,4>, <3,5>, <4,1>, <4,3>, <4,4>, <4,5>, <5,1>, <5,3>, <5,4>, <5,5>.
		

Crossrefs

Programs

  • Maple
    seq(seq(sum(binomial(n+1-k,j)*k^j*j^(n+1-k-j),j=0..(n+1-k)),k=1..n),n=1..15); # triangle's right edge of ones is omitted with this program
  • Mathematica
    t[n_, k_] := If[ k == n + 1, 1, Sum[ Binomial[n + 1 - k, j]*k^j*j^(n + 1 - k - j), {j, 0, n + 1 - k}]]; Table[ t[n, k], {n, 0, 9}, {k, n + 1}] // Flatten

Formula

T(n,k) = Sum_{j=0..n+1-k}binomial(n+1-k,j)*k^j*j^(n+1-k-j) for n>=0 and T(0,k) for k>=1.
E.g.f. of column k: exp(k*x*exp(x)).
With t(n,k) = T(n+k-1,k), t(n,k+j) = Sum_{i=0..n}binomial(n,i)*t(i,k)*t(n-i,j).

A295623 a(n) = n! * [x^n] exp(n*x*exp(x)).

Original entry on oeis.org

1, 1, 8, 90, 1424, 28900, 716292, 20972098, 708317248, 27108056808, 1159375192100, 54799938951934, 2836735081572240, 159606310760007436, 9698172715195196260, 632924646574215596850, 44153807025286701187328, 3278903858941755472870864, 258247909552273997037934788
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x Exp[x]], {x, 0, n}], {n, 0, 18}]
    Table[Sum[BellY[n, k, n Range[n]], {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, n^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} x^k/(k - 1)!).
From Seiichi Manyama, Jul 05 2022: (Start)
a(n) = [x^n] Sum_{k>=0} (n * x)^k/(1 - k*x)^(k+1).
a(n) = Sum_{k=0..n} n^k * k^(n-k) * binomial(n,k). (End)

A307996 Expansion of e.g.f. exp(1 - exp(x)*(1 - 2*x)).

Original entry on oeis.org

1, 1, 4, 15, 73, 410, 2591, 18165, 139266, 1155509, 10293729, 97815520, 986113613, 10499247005, 117603042220, 1381191356979, 16958788930317, 217132031279842, 2892337840164051, 40002168264724193, 573363461815952802, 8502905138072937073, 130268705062115090965, 2058969680487762098496
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[1 - Exp[x] (1 - 2 x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[(2 k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (2*k - 1)*binomial(n-1,k-1)*a(n-k).
Showing 1-4 of 4 results.