A355501
Expansion of e.g.f. exp(3 * x * exp(x)).
Original entry on oeis.org
1, 3, 15, 90, 633, 5028, 44217, 424434, 4399953, 48858984, 577372809, 7221983838, 95192539641, 1317190650636, 19071213218745, 288112248054882, 4530217559806497, 73976635012027344, 1252091246140278153, 21926952634345281030, 396671314081806278601
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[3x Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(3*x*exp(x))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*x)^k/(1-k*x)^(k+1)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, j*binomial(i-1, j-1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n, 3^k*k^(n-k)*binomial(n, k));
A187105
Triangle T(n,k) read by rows: number of height-2-restricted finite functions.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 10, 8, 3, 1, 41, 38, 15, 4, 1, 196, 216, 90, 24, 5, 1, 1057, 1402, 633, 172, 35, 6, 1, 6322, 10156, 5028, 1424, 290, 48, 7, 1, 41393, 80838, 44217, 13204, 2745, 450, 63, 8, 1, 293608, 698704, 424434, 134680, 28900, 4776, 658, 80, 9, 1
Offset: 1
Triangle of initial terms:
1
1 1
3 2 1
10 8 3 1
41 38 15 4 1
196 216 90 24 5 1
1057 1402 633 172 35 6 1
T(4,3) = 15 since there are 15 functions f:[2]->[5] such that either f(x) or f(f(x)) is in {3,4,5}. Using <f(1),f(2)> to denote these functions we have the following 15 functions: <2,3>, <2,4>, <2,5>, <3,1>, <3,3>, <3,4>, <3,5>, <4,1>, <4,3>, <4,4>, <4,5>, <5,1>, <5,3>, <5,4>, <5,5>.
-
seq(seq(sum(binomial(n+1-k,j)*k^j*j^(n+1-k-j),j=0..(n+1-k)),k=1..n),n=1..15); # triangle's right edge of ones is omitted with this program
-
t[n_, k_] := If[ k == n + 1, 1, Sum[ Binomial[n + 1 - k, j]*k^j*j^(n + 1 - k - j), {j, 0, n + 1 - k}]]; Table[ t[n, k], {n, 0, 9}, {k, n + 1}] // Flatten
A295623
a(n) = n! * [x^n] exp(n*x*exp(x)).
Original entry on oeis.org
1, 1, 8, 90, 1424, 28900, 716292, 20972098, 708317248, 27108056808, 1159375192100, 54799938951934, 2836735081572240, 159606310760007436, 9698172715195196260, 632924646574215596850, 44153807025286701187328, 3278903858941755472870864, 258247909552273997037934788
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n x Exp[x]], {x, 0, n}], {n, 0, 18}]
Table[Sum[BellY[n, k, n Range[n]], {k, 0, n}], {n, 0, 18}]
-
a(n) = sum(k=0, n, n^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022
A307996
Expansion of e.g.f. exp(1 - exp(x)*(1 - 2*x)).
Original entry on oeis.org
1, 1, 4, 15, 73, 410, 2591, 18165, 139266, 1155509, 10293729, 97815520, 986113613, 10499247005, 117603042220, 1381191356979, 16958788930317, 217132031279842, 2892337840164051, 40002168264724193, 573363461815952802, 8502905138072937073, 130268705062115090965, 2058969680487762098496
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[1 - Exp[x] (1 - 2 x)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[(2 k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
Showing 1-4 of 4 results.
Comments