cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A143398 Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains k labels, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 10, 3, 1, 0, 41, 9, 4, 1, 0, 196, 40, 10, 5, 1, 0, 1057, 210, 30, 15, 6, 1, 0, 6322, 1176, 175, 35, 21, 7, 1, 0, 41393, 7273, 1176, 105, 56, 28, 8, 1, 0, 293608, 49932, 7084, 756, 126, 84, 36, 9, 1, 0, 2237921, 372060, 42120, 6510, 378, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Examples

			T(4,2) = 9: 3->{1,2}<-4, 2->{1,3}<-4, 2->{1,4}<-3, 1->{2,3}<-4, 1->{2,4}<-3, 1->{3,4}<-2, {1,2}{3,4}, {1,3}{2,4}, {1,4}{2,3}.
Triangle begins:
  1;
  0,   1;
  0,   3,  1;
  0,  10,  3,  1;
  0,  41,  9,  4,  1;
  0, 196, 40, 10,  5,  1;
  ...
		

Crossrefs

Main diagonal gives A000012.
Row sums give A143406.
T(2n,n) gives A029651.

Programs

  • Maple
    u:= (n, k)-> `if`(k=0, 0, floor(n/k)):
    T:= (n, k)-> n! *add(i^(n-k*i)/ ((n-k*i)! *i! *k!^i), i=0..u(n, k)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    t[n_, n_] = 1; t[, 0] = 0; t[n, k_] := n!*Sum[i^(n-k*i)/((n-k*i)!*i!*k!^i), {i, 0, n/k}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)
  • PARI
    u(n,k) = if(k==0, 0, n\k);
    T(n, k) = n!*sum(j=0, u(n, k), j^(n-k*j)/(k!^j*j!*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022

Formula

T(n,k) = n! * Sum_{i=0..u(n,k)} i^(n-k*i)/((n-k*i)!*i!*k!^i) with u(n,k) = 0 if k=0 and u(n,k) = floor(n/k) else.

A346889 Expansion of e.g.f. 1 / (1 - x^3 * exp(x) / 3!).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 40, 315, 2296, 15204, 117720, 1127445, 11531740, 120909646, 1370809804, 17111895255, 227853866800, 3182209445640, 47003318806896, 737325061500009, 12187616610231540, 210930852047426770, 3821604062633503300, 72479758506840597451
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - x^3 Exp[x]/3!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^3*exp(x)/3!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(6^k*(n-3*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,3) * a(n-k).
a(n) ~ n! / ((1 + LambertW(2^(1/3)/3^(2/3))) * 3^(n+1) * LambertW(2^(1/3)/3^(2/3))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-3*k)/(6^k * (n-3*k)!). - Seiichi Manyama, May 13 2022

A346888 Expansion of e.g.f. 1 / (1 - x^2 * exp(x) / 2).

Original entry on oeis.org

1, 0, 1, 3, 12, 70, 465, 3591, 31948, 319068, 3539385, 43205635, 575312826, 8298867798, 128921967265, 2145837600375, 38097353658120, 718657756980376, 14354000800751313, 302625047150614179, 6716038666999745710, 156498725047355717250, 3820426102008414736761
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x^2 Exp[x]/2), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^2*exp(x)/2))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(2^k*(n-2*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,2) * a(n-k).
a(n) ~ n! / ((1 + LambertW(1/sqrt(2))) * 2^(n+1) * LambertW(1/sqrt(2))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-2*k)/(2^k * (n-2*k)!). - Seiichi Manyama, May 13 2022

A346890 Expansion of e.g.f. 1 / (1 - x^4 * exp(x) / 4!).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 15, 35, 140, 1386, 12810, 92730, 589545, 4234945, 41832791, 483334215, 5401798220, 57262207380, 626438655900, 7740130412796, 107197808258745, 1546730804858085, 22360919412385015, 329241486278715395, 5121840342205301946
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=4 of A351703.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 - x^4 Exp[x]/4!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^4*exp(x)/4!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\4, k^(n-4*k)/(24^k*(n-4*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,4) * a(n-k).
a(n) ~ n! / ((1 + LambertW(3^(1/4)/2^(5/4))) * 4^(n + 1) * LambertW(3^(1/4)/2^(5/4))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/4)} k^(n-4*k)/(24^k * (n-4*k)!). - Seiichi Manyama, May 13 2022

A346893 Expansion of e.g.f. 1 / (1 - x^5 * exp(x) / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 504, 6006, 67320, 577863, 4038034, 24975951, 165481680, 1553590220, 19495772856, 249507077436, 2910465717648, 31103684847837, 326286335505438, 3766644374319673, 51399738264984648, 785038533451101930
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=5 of A351703.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/(1 - x^5 Exp[x]/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^5*exp(x)/5!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\5, k^(n-5*k)/(120^k*(n-5*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,5) * a(n-k).
a(n) ~ n! / ((1 + LambertW(2^(3/5)*3^(1/5)/5^(4/5))) * 5^(n+1) * LambertW(2^(3/5)*3^(1/5)/5^(4/5))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/5)} k^(n-5*k)/(120^k * (n-5*k)!). - Seiichi Manyama, May 13 2022

A355666 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k/k! * (exp(x) - 1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 3, 1, 0, 2, 13, 1, 0, 0, 3, 75, 1, 0, 0, 3, 28, 541, 1, 0, 0, 0, 6, 125, 4683, 1, 0, 0, 0, 4, 10, 1146, 47293, 1, 0, 0, 0, 0, 10, 195, 8827, 545835, 1, 0, 0, 0, 0, 5, 20, 1281, 94200, 7087261, 1, 0, 0, 0, 0, 0, 15, 35, 5908, 1007001, 102247563, 1, 0, 0, 0, 0, 0, 6, 35, 1176, 68076, 12814390, 1622632573
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2022

Keywords

Examples

			Square array begins:
     1,    1,   1,  1,  1, 1, 1, ...
     1,    0,   0,  0,  0, 0, 0, ...
     3,    2,   0,  0,  0, 0, 0, ...
    13,    3,   3,  0,  0, 0, 0, ...
    75,   28,   6,  4,  0, 0, 0, ...
   541,  125,  10, 10,  5, 0, 0, ...
  4683, 1146, 195, 20, 15, 6, 0, ...
		

Crossrefs

Columns k=0..3 give A000670, A052848, A353998, A353999.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), j!*stirling(n-k*j, j, 2)/(k!^j*(n-k*j)!));

Formula

T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=k+1..n} binomial(n-k,j-k) * T(n-j,k) for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} j! * Stirling2(n-k*j,j)/(k!^j * (n-k*j)!).
Showing 1-6 of 6 results.