cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A346888 Expansion of e.g.f. 1 / (1 - x^2 * exp(x) / 2).

Original entry on oeis.org

1, 0, 1, 3, 12, 70, 465, 3591, 31948, 319068, 3539385, 43205635, 575312826, 8298867798, 128921967265, 2145837600375, 38097353658120, 718657756980376, 14354000800751313, 302625047150614179, 6716038666999745710, 156498725047355717250, 3820426102008414736761
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x^2 Exp[x]/2), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^2*exp(x)/2))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(2^k*(n-2*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,2) * a(n-k).
a(n) ~ n! / ((1 + LambertW(1/sqrt(2))) * 2^(n+1) * LambertW(1/sqrt(2))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-2*k)/(2^k * (n-2*k)!). - Seiichi Manyama, May 13 2022

A346890 Expansion of e.g.f. 1 / (1 - x^4 * exp(x) / 4!).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 15, 35, 140, 1386, 12810, 92730, 589545, 4234945, 41832791, 483334215, 5401798220, 57262207380, 626438655900, 7740130412796, 107197808258745, 1546730804858085, 22360919412385015, 329241486278715395, 5121840342205301946
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=4 of A351703.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 - x^4 Exp[x]/4!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^4*exp(x)/4!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\4, k^(n-4*k)/(24^k*(n-4*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,4) * a(n-k).
a(n) ~ n! / ((1 + LambertW(3^(1/4)/2^(5/4))) * 4^(n + 1) * LambertW(3^(1/4)/2^(5/4))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/4)} k^(n-4*k)/(24^k * (n-4*k)!). - Seiichi Manyama, May 13 2022

A351703 Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).

Original entry on oeis.org

1, 1, 1, 1, 0, 4, 1, 0, 1, 21, 1, 0, 0, 3, 148, 1, 0, 0, 1, 12, 1305, 1, 0, 0, 0, 4, 70, 13806, 1, 0, 0, 0, 1, 10, 465, 170401, 1, 0, 0, 0, 0, 5, 40, 3591, 2403640, 1, 0, 0, 0, 0, 1, 15, 315, 31948, 38143377, 1, 0, 0, 0, 0, 0, 6, 35, 2296, 319068, 672552730
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2022

Keywords

Examples

			Square array begins:
      1,   1,  1,  1, 1, 1, ...
      1,   0,  0,  0, 0, 0, ...
      4,   1,  0,  0, 0, 0, ...
     21,   3,  1,  0, 0, 0, ...
    148,  12,  4,  1, 0, 0, ...
   1305,  70, 10,  5, 1, 0, ...
  13806, 465, 40, 15, 6, 1, ...
		

Crossrefs

Column k=1..5 gives A006153, A346888, A346889, A346890, A346893.

Programs

  • PARI
    T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k)));
    
  • PARI
    T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022

Formula

T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * T(j,k) for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(k!^j * (n-k*j)!). - Seiichi Manyama, May 13 2022

A346893 Expansion of e.g.f. 1 / (1 - x^5 * exp(x) / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 504, 6006, 67320, 577863, 4038034, 24975951, 165481680, 1553590220, 19495772856, 249507077436, 2910465717648, 31103684847837, 326286335505438, 3766644374319673, 51399738264984648, 785038533451101930
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=5 of A351703.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/(1 - x^5 Exp[x]/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^5*exp(x)/5!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\5, k^(n-5*k)/(120^k*(n-5*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,5) * a(n-k).
a(n) ~ n! / ((1 + LambertW(2^(3/5)*3^(1/5)/5^(4/5))) * 5^(n+1) * LambertW(2^(3/5)*3^(1/5)/5^(4/5))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/5)} k^(n-5*k)/(120^k * (n-5*k)!). - Seiichi Manyama, May 13 2022

A352357 Expansion of e.g.f. 1/(1 - Sum_{k>=1} binomial(k+2,3) * x^k/k!).

Original entry on oeis.org

1, 1, 6, 40, 364, 4155, 56836, 907158, 16547896, 339587445, 7743161740, 194212763756, 5314051343932, 157520046898695, 5028409083962824, 171984217743856890, 6274444932921616176, 243215342466576246185, 9982290554423689511124, 432464578359391409082952
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-(x+x^2+x^3/6)*exp(x))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, binomial(k+2, 3)*binomial(n, k)*a(n-k)));

Formula

E.g.f.: 1/(1 - (x + x^2 + x^3/6)*exp(x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(k+2,3) * binomial(n,k) * a(n-k).

A370987 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^3/6*exp(x)) ).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 100, 1295, 11256, 110964, 1713720, 27147285, 409295260, 7192099486, 146953847404, 3083283003255, 67579239087920, 1632183291677800, 42282787050941616, 1140103579166365929, 32452333261311639540, 982975683671186407090, 31244119064026146137860
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^3/6*exp(x)))/x))
    
  • PARI
    a(n) = sum(k=0, n\3, k^(n-3*k)*(n+k)!/(6^k*k!*(n-3*k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} k^(n-3*k) * (n+k)!/(6^k * k! * (n-3*k)!).
Showing 1-6 of 6 results.