cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351761 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2022

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  0,    1,     2,     3,      4,      5, ...
  0,    4,    12,    24,     40,     60, ...
  0,   21,   102,   279,    588,   1065, ...
  0,  148,  1160,  4332,  11536,  25220, ...
  0, 1305, 16490, 84075, 282900, 746525, ...
		

Crossrefs

Columns k=0..3 give A000007, A006153, A351762, A351763.
Main diagonal gives A351765.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
    
  • PARI
    T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));

Formula

E.g.f. of column k: 1/(1 - k*x*exp(x)).
T(0,k) = 1 and T(n,k) = k * n * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.

A351778 Expansion of e.g.f. 1/(1 + 3*x*exp(x)).

Original entry on oeis.org

1, -3, 12, -63, 420, -3435, 33462, -379155, 4903896, -71318259, 1152202290, -20474486043, 396890715636, -8334602179995, 188486823883134, -4567087352339235, 118039115079323952, -3241465018561379427, 94249758656850366186, -2892678859033260044043
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2022

Keywords

Crossrefs

Column k=3 of A351776.
Cf. A351763.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1+3x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 21 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+3*x*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-3)^(n-k)*(n-k)^k/k!);
    
  • PARI
    a(n) = if(n==0, 1, -3*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));

Formula

a(n) = n! * Sum_{k=0..n} (-3)^(n-k) * (n-k)^k/k!.
a(0) = 1 and a(n) = -3 * n * Sum_{k=0..n-1} binomial(n-1,k) * a(k) for n > 0.

A355501 Expansion of e.g.f. exp(3 * x * exp(x)).

Original entry on oeis.org

1, 3, 15, 90, 633, 5028, 44217, 424434, 4399953, 48858984, 577372809, 7221983838, 95192539641, 1317190650636, 19071213218745, 288112248054882, 4530217559806497, 73976635012027344, 1252091246140278153, 21926952634345281030, 396671314081806278601
Offset: 0

Views

Author

Seiichi Manyama, Jul 04 2022

Keywords

Crossrefs

Column 3 of A187105.
Cf. A351763.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3x Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(3*x*exp(x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*x)^k/(1-k*x)^(k+1)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, j*binomial(i-1, j-1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n, 3^k*k^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} (3 * x)^k/(1 - k*x)^(k+1).
a(0) = 1; a(n) = 3 * Sum_{k=1..n} k * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 3^k * k^(n-k) * binomial(n,k).
a(n) ~ n^(n + 1/2) * exp(3*r*exp(r) - r/2 - n) / (sqrt(3*(1 + 3*r + r^2)) * r^(n + 1/2)), where r = 2*w - 1/(2*w) + 5/(8*w^2) - 19/(24*w^3) + 209/(192*w^4) - 763/(480*w^5) + 4657/(1920*w^6) - 6855/(1792*w^7) + 199613/(32256*w^8) + ... and w = LambertW(sqrt(n/3)/2). - Vaclav Kotesovec, Jul 06 2022
Showing 1-3 of 3 results.