A351761
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} k^(n-j) * (n-j)^j/j!.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 12, 21, 0, 1, 4, 24, 102, 148, 0, 1, 5, 40, 279, 1160, 1305, 0, 1, 6, 60, 588, 4332, 16490, 13806, 0, 1, 7, 84, 1065, 11536, 84075, 281292, 170401, 0, 1, 8, 112, 1746, 25220, 282900, 1958058, 5598110, 2403640, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 4, 12, 24, 40, 60, ...
0, 21, 102, 279, 588, 1065, ...
0, 148, 1160, 4332, 11536, 25220, ...
0, 1305, 16490, 84075, 282900, 746525, ...
-
T(n, k) = n!*sum(j=0, n, k^(n-j)*(n-j)^j/j!);
-
T(n, k) = if(n==0, 1, k*n*sum(j=0, n-1, binomial(n-1, j)*T(j, k)));
A351778
Expansion of e.g.f. 1/(1 + 3*x*exp(x)).
Original entry on oeis.org
1, -3, 12, -63, 420, -3435, 33462, -379155, 4903896, -71318259, 1152202290, -20474486043, 396890715636, -8334602179995, 188486823883134, -4567087352339235, 118039115079323952, -3241465018561379427, 94249758656850366186, -2892678859033260044043
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1+3x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 21 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+3*x*exp(x))))
-
a(n) = n!*sum(k=0, n, (-3)^(n-k)*(n-k)^k/k!);
-
a(n) = if(n==0, 1, -3*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));
A351779
a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * (n-k)^k/k!.
Original entry on oeis.org
1, -1, 4, -63, 2288, -138525, 12381084, -1528482823, 249005711296, -51739455340953, 13353206066063900, -4190486732316600771, 1571373340568392914288, -693899460077821703051125, 356404409990391961980227068, -210670220153918100996704166975
Offset: 0
A351791
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} (-k * (n-j))^j/j!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -2, -3, 24, 1, 1, -4, -6, -4, 120, 1, 1, -6, -3, 40, 25, 720, 1, 1, -8, 6, 132, 120, 114, 5040, 1, 1, -10, 21, 248, -375, -1872, -287, 40320, 1, 1, -12, 42, 364, -2120, -8298, -3920, -4152, 362880, 1, 1, -14, 69, 456, -5655, -12144, 86121, 155776, -1647, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 0, -2, -4, -6, -8, ...
6, -3, -6, -3, 6, 21, ...
24, -4, 40, 132, 248, 364, ...
120, 25, 120, -375, -2120, -5655, ...
Main diagonal gives (-1)^n *
A302398(n).
-
T[n_, k_] := n!*(1 + Sum[(-k*(n - j))^j/j!, {j, 1, n}]); Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 19 2022 *)
-
T(n, k) = n!*sum(j=0, n, (-k*(n-j))^j/j!);
-
T(n, k) = if(n==0, 1, n*sum(j=0, n-1, (-k)^(n-1-j)*binomial(n-1, j)*T(j, k)));
A351777
Expansion of e.g.f. 1/(1 + 2*x*exp(x)).
Original entry on oeis.org
1, -2, 4, -6, -8, 150, -972, 3682, 6256, -289746, 3300460, -21071622, -27876312, 3156947014, -53217341660, 494232431250, 175171749088, -113735274256290, 2613309376750812, -32653995355358678, 36013529538641560, 10227377502146048118, -305630239215263764076
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1+2x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 06 2024 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+2*x*exp(x))))
-
a(n) = n!*sum(k=0, n, (-2)^(n-k)*(n-k)^k/k!);
-
a(n) = if(n==0, 1, -2*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));
Showing 1-5 of 5 results.