A052807
Expansion of e.g.f. -LambertW(log(1-x)).
Original entry on oeis.org
0, 1, 3, 17, 146, 1704, 25284, 456224, 9702776, 237711888, 6593032560, 204212077992, 6986942528400, 261700394006232, 10650713784774504, 468007296229553880, 22083086552247101184, 1113646609708909274880
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
E.g.f.: A(x) = x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! +...
A(x)/exp(A(x)) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +...
-
spec := [S,{B=Cycle(Z),C=Set(S),S=Prod(C,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
max = 17; se = Series[-ProductLog[-Log[-(-1 + x)^(-1)]] , {x, 0, max}]; Join[{0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) * Range[max]!] (* Jean-François Alcover, Jun 24 2013 *)
CoefficientList[Series[-LambertW[-Log[-1/(-1 + x)]], {x,0,50}], x]*
Range[0,50]! (* G. C. Greubel, Jun 18 2017 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))^A);n!*polcoeff(log(A),n)} \\ Paul D. Hanna, Jul 19 2006
-
x = 'x + O('x^30); concat(0, Vec(serlaplace(-lambertw(log(1-x))))) \\ Michel Marcus, Jun 19 2017
A216857
Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.
Original entry on oeis.org
0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0
-
With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
-
for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
-
my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017
A036249
Number of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
0, 1, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1717
- Håvard Berland, Brynjulf Owren and Bård Skaflestad, B-series and order conditions for exponential integrators, 2004. See p. 6.
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, Journal of Algebra, 465 (2016), 322-355.
- Timothy Y. Chow and Mark G. Tiefenbruck, The Latin Tableau Conjecture, 2024. See p. 11.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 768
- Index entries for sequences related to rooted trees
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*
add(d*a(d), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+b(n-1)) end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 13 2018
-
max = 27; A[] = 1; Do[A[x] = x*Exp[Sum[(A[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
{a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x*exp(sum(m=1,n,(subst(A,x,x^m)+x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005
A282190
E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function.
Original entry on oeis.org
1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...
- G. C. Greubel, Table of n, a(n) for n = 0..375
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's MathWorld, Stirling Transform
-
b:= proc(n, m) option remember;
`if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 03 2021
-
Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]
Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]
-
x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017
A038052
Number of labeled trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
1, 1, 2, 7, 42, 376, 4513, 68090, 1238968, 26416729, 646140364, 17837852044, 548713088399, 18612963873492, 690271321314292, 27785827303491579, 1206582732097720126, 56224025231569020724, 2798445211000659147033, 148178324442139816854902, 8317074395027724691495980
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0,
m^max(0, m-2), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 16 2022
-
a[0] = 1; a[n_] := Sum[StirlingS2[n, k]*k^(k - 2), {k, 1, n}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 09 2013, after Vladeta Jovovic *)
A058863
Number of connected labeled chordal graphs on n nodes with no induced path P_4; also the number of labeled trees with each vertex replaced by a clique.
Original entry on oeis.org
1, 1, 4, 23, 181, 1812, 22037, 315569, 5201602, 97009833, 2019669961, 46432870222, 1168383075471, 31939474693297, 942565598033196, 29866348653695203, 1011335905644178273, 36446897413531401020, 1392821757824071815641, 56259101478392975833333
Offset: 1
- Jon E. Schoenfield, Table of n, a(n) for n = 1..100
- R. Castelo and N. C. Wormald, Enumeration of P4-free chordal graphs
- R. Castelo and N. C. Wormald, Enumeration of P4-Free chordal graphs, Graphs and Combinatorics, 19:467-474, 2003.
- M. C. Golumbic, Trivially perfect graphs, Discr. Math. 24(1) (1978), 105-107.
- Venkatesan Guruswami, Enumerative aspects of certain subclasses of perfect graphs, Discrete Math. 205 (1999), 97-117.
- T. H. Ma and J. P. Spinrad, Cycle-free partial orders and chordal comparability graphs, Order, 1991, 8:49-61.
- E. S. Wolk, A note on the comparability graph of a tree, Proc. Am. Math. Soc., 1965, 16:17-20.
-
S:= series(-LambertW(exp(-x)-1), x, 101):
seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 30 2015
-
a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k^(k-1), {k, 1, n}];
Array[a, 20] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
-
geta(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(1)); return(1 + sum(k=1, n-2, binomial(n,k)*(vA[n-k] - va[n-k])));}
getA(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(2)); return ((va[n] + sum(k=1, n-1, k*va[k]*binomial(n,k)*vA[n-k])/n));}
both(n) = {va = vector(n); vA = vector(n); for (i=1, n, va[i] = geta(i, va, vA); vA[i] = getA(i, va, vA);); print("va_A058863=", va); print("vA_A058864=", vA);}
\\ Michel Marcus, Apr 03 2013
A357267
Expansion of e.g.f. -LambertW(x * (1 - exp(x))).
Original entry on oeis.org
0, 0, 2, 3, 28, 125, 1506, 12607, 186600, 2352681, 41839750, 705821171, 14818593516, 311784460429, 7603945309338, 190868446707135, 5328147004384336, 154893585657590609, 4884408906341245326, 161057122218190660555, 5671407469802947722900
Offset: 0
-
my(N=20, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-lambertw(x*(1-exp(x))))))
-
a(n) = n!*sum(k=1, n\2, k^(k-1)*stirling(n-k, k, 2)/(n-k)!);
A038051
G.f.: B(x/(1-x)) where B is g.f. of A000169.
Original entry on oeis.org
1, 3, 14, 98, 944, 11642, 175108, 3108310, 63601168, 1473864722, 38152990484, 1091172974102, 34169139856024, 1162736848398010, 42723615842296540, 1685853467536076798, 71101435046807892512, 3191843270961299033762, 151956292916451992949028
Offset: 1
-
CoefficientList[Series[E^x*(-LambertW[-x]/(1+LambertW[-x])/x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)
A357335
E.g.f. satisfies A(x) = (exp(x) - 1) * exp(2 * A(x)).
Original entry on oeis.org
0, 1, 5, 49, 757, 16081, 435477, 14345297, 556857973, 24894290257, 1259621627349, 71165987957329, 4440821632449077, 303338709537825105, 22512353926895739797, 1803812930088064925265, 155195078834104237961717, 14270228623788585753803089
Offset: 0
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(2*(1-exp(x)))/2)))
-
a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 2));
A357336
E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).
Original entry on oeis.org
0, 1, 7, 100, 2257, 70021, 2768740, 133164109, 7546722487, 492531820066, 36381833190223, 3000677194970137, 273342303933512362, 27256107730344331879, 2952882035628632383975, 345384835617231362018764, 43378466647737203462409829, 5822506028894124326533926193
Offset: 0
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*(1-exp(x)))/3)))
-
a(n) = sum(k=1, n, (3*k)^(k-1)*stirling(n, k, 2));
Showing 1-10 of 19 results.
Comments