cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A052807 Expansion of e.g.f. -LambertW(log(1-x)).

Original entry on oeis.org

0, 1, 3, 17, 146, 1704, 25284, 456224, 9702776, 237711888, 6593032560, 204212077992, 6986942528400, 261700394006232, 10650713784774504, 468007296229553880, 22083086552247101184, 1113646609708909274880
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
E.g.f. of A052813 equals exp(A(x)) = -A(x)/log(1-x). a(n) = n!*Sum_{k=0..n-1} A052813(k)/k!/(n-k). - Paul D. Hanna, Jul 19 2006

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! +...
A(x)/exp(A(x)) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +...
		

Crossrefs

Cf. A006963, A048802, A052813 (exp(A(x))), A277489.

Programs

  • Maple
    spec := [S,{B=Cycle(Z),C=Set(S),S=Prod(C,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    max = 17; se = Series[-ProductLog[-Log[-(-1 + x)^(-1)]] , {x, 0, max}]; Join[{0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) * Range[max]!] (* Jean-François Alcover, Jun 24 2013 *)
    CoefficientList[Series[-LambertW[-Log[-1/(-1 + x)]], {x,0,50}], x]*
    Range[0,50]! (* G. C. Greubel, Jun 18 2017 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))^A);n!*polcoeff(log(A),n)} \\ Paul D. Hanna, Jul 19 2006
    
  • PARI
    x = 'x + O('x^30); concat(0, Vec(serlaplace(-lambertw(log(1-x))))) \\ Michel Marcus, Jun 19 2017

Formula

a(n) = Sum_{k=1..n} |Stirling1(n, k)|*k^(k-1). - Vladeta Jovovic, Sep 17 2003
E.g.f. satisfies: A(x) = 1/(1-x)^A(x). - Paul D. Hanna, Jul 19 2006
a(n) ~ n^(n-1)*exp((exp(-1)-1)*n+1/2) / (exp(exp(-1))-1)^(n-1/2). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: Series_Reversion( 1 - exp(-x*exp(-x)) ). - Seiichi Manyama, Sep 08 2024

Extensions

New name using e.g.f. by Vaclav Kotesovec, Oct 18 2013

A216857 Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.

Original entry on oeis.org

0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0

Views

Author

Geoffrey Critzer, Sep 17 2012

Keywords

Comments

Essentially the same as A038049.
Also the number of rooted trees whose nodes are labeled with the blocks of a set partition of {1,2,...,n} each having a distinguished element. (See A000248.)
The bijection is straightforward. The trees correspond to functional digraphs mapping the distinguished elements towards the root. All the elements within each block are mapped to the distinguished element of that block. The distinguished element in the root node is the fixed point.

Crossrefs

Programs

  • Mathematica
    With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
  • PARI
    for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017

Formula

E.g.f.: T(x*exp(x)) where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-1).
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Jul 09 2013
O.g.f.: Sum_{n>=0} n^(n-1)* x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
E.g.f.: the compositional inverse of A(x) is -A(-x). - Alexander Burstein, Aug 11 2018

A036249 Number of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

0, 1, 2, 5, 13, 37, 108, 332, 1042, 3360, 11019, 36722, 123875, 422449, 1453553, 5040816, 17599468, 61814275, 218252584, 774226549, 2758043727, 9862357697, 35387662266, 127374191687, 459783039109, 1664042970924, 6037070913558, 21951214425140, 79981665585029
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Essentially the same as A029856. Cf. A048802. Row sums of A303911.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*
          add(d*a(d), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+b(n-1)) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    max = 27; A[] = 1; Do[A[x] = x*Exp[Sum[(A[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
  • PARI
    {a(n)=local(A=x+x*O(x^n));for(i=1,n, A=x*exp(sum(m=1,n,(subst(A,x,x^m)+x^m)/m)));polcoeff(A,n,x)} \\ Paul D. Hanna, Oct 19 2005

Formula

G.f. satisfies: A(x) = x*exp( Sum_{n>=1} (A(x^n) + x^n)/n ). - Paul D. Hanna, Oct 19 2005
If b(n) is the Euler transform of a(n), A052855, then a(n+1) = a(n) + b(n). - Franklin T. Adams-Watters, Mar 09 2006
G.f.: (x/(1 - x)) * Product_{n>=1} 1/(1 - x^n)^a(n). - Ilya Gutkovskiy, Jun 28 2021

A282190 E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function.

Original entry on oeis.org

1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2017

Keywords

Comments

Stirling transform of A000312.

Examples

			E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]
    Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017

Formula

a(0) = 1, a(n) = Sum_{k=1..n} Stirling2(n,k)*k^k.
a(n) ~ n^n / (sqrt(1+exp(1)) * (log(1+exp(-1)))^(n+1/2) * exp(n)). - Vaclav Kotesovec, Feb 17 2017

A038052 Number of labeled trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

1, 1, 2, 7, 42, 376, 4513, 68090, 1238968, 26416729, 646140364, 17837852044, 548713088399, 18612963873492, 690271321314292, 27785827303491579, 1206582732097720126, 56224025231569020724, 2798445211000659147033, 148178324442139816854902, 8317074395027724691495980
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
          m^max(0, m-2), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 16 2022
  • Mathematica
    a[0] = 1; a[n_] := Sum[StirlingS2[n, k]*k^(k - 2), {k, 1, n}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 09 2013, after Vladeta Jovovic *)

Formula

E.g.f.: B(e^x-1) where B is e.g.f. of A000272.
a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-2). - Vladeta Jovovic, Sep 20 2003
a(n) ~ (1+exp(1))^(3/2) * n^(n-2) / (exp(n) * (log(1+exp(-1)))^(n-3/2)). - Vaclav Kotesovec, Feb 17 2017

A058863 Number of connected labeled chordal graphs on n nodes with no induced path P_4; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 1, 4, 23, 181, 1812, 22037, 315569, 5201602, 97009833, 2019669961, 46432870222, 1168383075471, 31939474693297, 942565598033196, 29866348653695203, 1011335905644178273, 36446897413531401020, 1392821757824071815641, 56259101478392975833333
Offset: 1

Views

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Crossrefs

Programs

  • Maple
    S:= series(-LambertW(exp(-x)-1), x, 101):
    seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 30 2015
  • Mathematica
    a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k^(k-1), {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
  • PARI
    geta(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(1)); return(1 + sum(k=1, n-2, binomial(n,k)*(vA[n-k] - va[n-k])));}
    getA(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(2)); return ((va[n] + sum(k=1, n-1, k*va[k]*binomial(n,k)*vA[n-k])/n));}
    both(n) = {va = vector(n); vA = vector(n); for (i=1, n, va[i] = geta(i, va, vA); vA[i] = getA(i, va, vA);); print("va_A058863=", va); print("vA_A058864=", vA);}
    \\ Michel Marcus, Apr 03 2013

Formula

A058863 and A058864 satisfy:
1) c(n) = 1 + Sum_{k=1..n-2} binomial(n, k)*(t(n-k) - c(n-k))
2) t(n) = c(n) + Sum_{k=1..n-1} k*c(k)*binomial(n, k)*t(n-k)/n
where c(n) (A058863) is the number of connected graphs of this type and t(n) (A058864) is the total number of such graphs.
a(n) is asymptotic to sqrt(r*(e-1))/n*(n/(e*r))^n where r = 1 - log(e-1).
E.g.f.: -LambertW(exp(-x)-1). - Vladeta Jovovic, Nov 22 2002
a(n) = Sum_{k=0..n} Stirling2(n, k)*A060356(k). Also a(n) = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n, k)*k^(k-1). - Vladeta Jovovic, Sep 17 2003

Extensions

Formulae edited and completed by Michel Marcus, Apr 07 2013

A357267 Expansion of e.g.f. -LambertW(x * (1 - exp(x))).

Original entry on oeis.org

0, 0, 2, 3, 28, 125, 1506, 12607, 186600, 2352681, 41839750, 705821171, 14818593516, 311784460429, 7603945309338, 190868446707135, 5328147004384336, 154893585657590609, 4884408906341245326, 161057122218190660555, 5671407469802947722900
Offset: 0

Views

Author

Seiichi Manyama, Sep 21 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-lambertw(x*(1-exp(x))))))
    
  • PARI
    a(n) = n!*sum(k=1, n\2, k^(k-1)*stirling(n-k, k, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/2)} k^(k-1) * Stirling2(n-k,k)/(n-k)!.

A038051 G.f.: B(x/(1-x)) where B is g.f. of A000169.

Original entry on oeis.org

1, 3, 14, 98, 944, 11642, 175108, 3108310, 63601168, 1473864722, 38152990484, 1091172974102, 34169139856024, 1162736848398010, 42723615842296540, 1685853467536076798, 71101435046807892512, 3191843270961299033762, 151956292916451992949028
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

E.g.f. of A048802.

Programs

  • Mathematica
    CoefficientList[Series[E^x*(-LambertW[-x]/(1+LambertW[-x])/x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)

Formula

E.g.f.: int(exp(x)*(-LambertW(-x)/(1+LambertW(-x))/x), x). a(n) = Sum_{k=0..n-1} binomial(n-1, k)*(k+1)^k. - Vladeta Jovovic, Apr 12 2003
a(n) ~ n^(n-1) * exp(exp(-1)). - Vaclav Kotesovec, Feb 17 2014

Extensions

Corrected by Christian G. Bower, Mar 15 1999

A357335 E.g.f. satisfies A(x) = (exp(x) - 1) * exp(2 * A(x)).

Original entry on oeis.org

0, 1, 5, 49, 757, 16081, 435477, 14345297, 556857973, 24894290257, 1259621627349, 71165987957329, 4440821632449077, 303338709537825105, 22512353926895739797, 1803812930088064925265, 155195078834104237961717, 14270228623788585753803089
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(2*(1-exp(x)))/2)))
    
  • PARI
    a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: -LambertW(2 * (1 - exp(x)))/2.
a(n) = Sum_{k=1..n} (2 * k)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt(1 + 2*exp(1)) * n^(n-1) / (2 * exp(n) * log(1 + exp(-1)/2)^(n - 1/2)). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( log(1 + x * exp(-2*x)) ). - Seiichi Manyama, Sep 09 2024

A357336 E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).

Original entry on oeis.org

0, 1, 7, 100, 2257, 70021, 2768740, 133164109, 7546722487, 492531820066, 36381833190223, 3000677194970137, 273342303933512362, 27256107730344331879, 2952882035628632383975, 345384835617231362018764, 43378466647737203462409829, 5822506028894124326533926193
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*(1-exp(x)))/3)))
    
  • PARI
    a(n) = sum(k=1, n, (3*k)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: -LambertW(3 * (1 - exp(x)))/3.
a(n) = Sum_{k=1..n} (3 * k)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3 * exp(n) * log(1 + exp(-1)/3)^(n - 1/2)). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( log(1 + x * exp(-3*x)) ). - Seiichi Manyama, Sep 09 2024
Showing 1-10 of 19 results. Next