A048802
Number of labeled rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
Original entry on oeis.org
1, 3, 16, 133, 1521, 22184, 393681, 8233803, 198342718, 5408091155, 164658043397, 5537255169582, 203840528337291, 8153112960102283, 352079321494938344, 16325961781591781401, 809073412162081974237, 42674870241038732398720, 2386963662244981472850709
Offset: 1
G.f. = x + 3*x^2 + 16*x^3 + 133*x^4 + 1521*x^5 + 22184*x^6 + 393681*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 861
- B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Index entries for sequences related to rooted trees
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[Exp[x]-1 ,{x,0,nn}]],x] (* Geoffrey Critzer, Sep 16 2012 *)
-
{a(n) = sum( k=1, n, stirling(n, k, 2) * k^(k - 1))}; /* Michael Somos, Jun 09 2012 */
-
{a(n) = n! * polcoeff( serreverse( log(1 + x*exp(-x +x*O(x^n))) ),n)}
for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 24 2016
A052813
Expansion of e.g.f.: LambertW(log(1-x))/log(1-x).
Original entry on oeis.org
1, 1, 4, 27, 260, 3280, 51414, 965762, 21175496, 531317520, 15021531840, 472654558992, 16385500397496, 620612495460048, 25500923655523848, 1129909190812470840, 53705490284841870144, 2725878142900911376896
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 260*x^4/4! +...
Log(A(x))/A(x) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +...
-
spec := [S,{C=Cycle(Z),S=Set(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[1/Log[1-x]*LambertW[Log[1-x]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))^A);n!*polcoeff(A,n)} \\ Paul D. Hanna, Jul 19 2006
-
{a(n)=n!*polcoeff(sum(m=0,n,(m+1)^(m-1)/m!*(-log(1-x+x*O(x^n)))^m),n)} \\ Paul D. Hanna, Jun 22 2009
-
{a(n) = my(A=1+x); for(i=1,n, A = sum(m=0,n, x^m/m! * prod(k=0,m-1,A + k) +x*O(x^n)) ); n!*polcoeff(A,n)}
for(n=0,20, print1(a(n),", ")) \\ Paul D. Hanna, Oct 26 2015
-
x='x+O('x^30); Vec(serlaplace((1/log(1-x))*lambertw(log(1-x)))) \\ G. C. Greubel, Feb 19 2018
A305819
Expansion of e.g.f. 1/(1 + LambertW(-log(1 + x))).
Original entry on oeis.org
1, 1, 3, 17, 132, 1334, 16442, 239994, 4041776, 77183328, 1647541632, 38877352392, 1004869488048, 28234217634024, 856830099396840, 27930093941047464, 973269467390922240, 36104568839480990400, 1420556927968241858880, 59088101641333114906944, 2590680379402887359111424
Offset: 0
-
a:=series(1/(1+LambertW(-log(1+x))),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
-
nmax = 20; CoefficientList[Series[1/(1 + LambertW[-Log[1 + x]]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[Sum[StirlingS1[n, k] k^k, {k, n}], {n, 20}]]
-
a(n) = sum(k=0, n, k^k*stirling(n, k, 1)); \\ Seiichi Manyama, Feb 05 2022
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-log(1+x))))) \\ Seiichi Manyama, Feb 05 2022
A120980
E.g.f. satisfies: A(x)^A(x) = 1 + x.
Original entry on oeis.org
1, 1, -2, 9, -68, 740, -10554, 185906, -3891320, 94259952, -2592071760, 79748398752, -2713685928744, 101184283477680, -4102325527316184, 179674073609647080, -8454031849605513024, 425281651659459346944, -22777115050468598701248
Offset: 0
-
CoefficientList[Series[Log[1+x]/LambertW[Log[1+x]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
Table[StirlingS1[n, 0] + StirlingS1[n, 1] + Sum[(-1)^(k + 1)*StirlingS1[n, k]*(k - 1)^(k - 1), {k, 2, n}], {n,0,50}] (* G. C. Greubel, Jun 21 2017 *)
CoefficientList[Series[Exp[LambertW[Log[1+x]]], {x, 0, 25}], x]* Range[0, 25]! (* G. C. Greubel, Jun 22 2017 *)
-
{a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0); A[ #A]=-Vec(Ser(A)^Ser(A))[ #A]);n!*A[n+1]}
-
x='x+O('x^50); Vec(serlaplace(exp(lambertw(log(1+x))))) \\ G. C. Greubel, Jun 22 2017
A277489
Expansion of e.g.f. -LambertW(-log(1+x)).
Original entry on oeis.org
0, 1, 1, 5, 26, 224, 2244, 28496, 417976, 7122384, 136770960, 2937770472, 69626588976, 1806936836184, 50936933449752, 1550292926398680, 50661309325357824, 1769286989373994752, 65762170385201959680, 2591979585702305271552, 107982615297265761991680
Offset: 0
-
CoefficientList[Series[-LambertW[-Log[1+x]], {x, 0, 20}], x] * Range[0, 20]!
Table[Sum[StirlingS1[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
-
my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-log(1+x))))) \\ G. C. Greubel, Jun 21 2017
A357265
Expansion of e.g.f. -LambertW(x * log(1-x)).
Original entry on oeis.org
0, 0, 2, 3, 32, 150, 1884, 16380, 249808, 3255336, 59596560, 1037413080, 22432698144, 486784686960, 12233449250736, 316660035739320, 9111729094222080, 273147758526888000, 8880267446524694016, 301952732236006556160, 10963551960785051470080
Offset: 0
-
my(N=20, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-lambertw(x*log(1-x)))))
-
a(n) = n!*sum(k=1, n\2, k^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A305981
Expansion of e.g.f. 1/(1 + LambertW(log(1 - x))).
Original entry on oeis.org
1, 1, 5, 41, 468, 6854, 122582, 2589978, 63129392, 1743732192, 53827681152, 1836453542472, 68620052332752, 2786929842106344, 122241516227220504, 5758920745460806824, 290017142065771138560, 15547326972257789803200, 883974436758296523437760, 53131928820278417749940544, 3366145488853852112016117504
Offset: 0
-
a:=series(1/(1+LambertW(log(1-x))),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
-
nmax = 20; CoefficientList[Series[1/(1 + LambertW[Log[1 - x]]), {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] k^k, {k, n}], {n, 20}]]
-
a(n) = sum(k=0, n, (-1)^(n-k)*k^k*stirling(n, k, 1)); \\ Seiichi Manyama, Feb 05 2022
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(log(1-x))))) \\ Seiichi Manyama, Feb 05 2022
A357334
E.g.f. satisfies A(x) = -log(1 - x) * exp(3 * A(x)).
Original entry on oeis.org
0, 1, 7, 101, 2286, 71064, 2815812, 135719352, 7708432680, 504204903504, 37327594368240, 3085620116373288, 281715917686701264, 28154794766366676888, 3057177180272007475368, 358397769923628731936280, 45115415964514707860498688, 6069465245766845367272738304
Offset: 0
-
nmax = 17; A[_] = 0;
Do[A[x_] = -Log[1 - x]*Exp[3*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*log(1-x))/3)))
-
a(n) = sum(k=1, n, (3*k)^(k-1)*abs(stirling(n, k, 1)));
A357333
E.g.f. satisfies A(x) = -log(1 - x) * exp(2 * A(x)).
Original entry on oeis.org
0, 1, 5, 50, 778, 16604, 451668, 14947568, 582982160, 26187136128, 1331445995520, 75589772147328, 4739901861071232, 325353447339098112, 24264683011603485696, 1953776475810372817920, 168924939633683095452672, 15609228287753846217412608
Offset: 0
-
nmax = 17; A[_] = 0;
Do[A[x_] = -Log[1 - x]*Exp[2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(2*log(1-x))/2)))
-
a(n) = sum(k=1, n, (2*k)^(k-1)*abs(stirling(n, k, 1)));
A357343
E.g.f. satisfies A(x) = -log(1 - x * exp(A(x))) * exp(A(x)).
Original entry on oeis.org
0, 1, 5, 53, 878, 19904, 573984, 20112770, 829953368, 39425517072, 2119169565120, 127163052628512, 8426599011632592, 611181716437826832, 48159349246147915944, 4096752391897622411880, 374189567290578072309504, 36525100459236757201316352
Offset: 0
-
a(n) = sum(k=1, n, (n+k)^(k-1)*abs(stirling(n, k, 1)));
Showing 1-10 of 16 results.
Comments