A036262 Array of numbers read by upward antidiagonals, arising from Gilbreath's conjecture: leading row lists the primes; the following rows give absolute values of differences of previous row.
2, 1, 3, 1, 2, 5, 1, 0, 2, 7, 1, 2, 2, 4, 11, 1, 2, 0, 2, 2, 13, 1, 2, 0, 0, 2, 4, 17, 1, 2, 0, 0, 0, 2, 2, 19, 1, 2, 0, 0, 0, 0, 2, 4, 23, 1, 2, 0, 0, 0, 0, 0, 2, 6, 29, 1, 0, 2, 2, 2, 2, 2, 2, 4, 2, 31, 1, 0, 0, 2, 0, 2, 0, 2, 0, 4, 6, 37, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 2, 4, 41, 1, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 0
Examples
The array begins (conjecture is leading term is always 1): 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 1 2 2 4 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 1 0 2 2 2 2 2 2 4 4 2 2 2 2 0 4 4 2 2 4 2 2 2 4 2 2 1 2 0 0 0 0 0 2 0 2 0 0 0 2 4 0 2 0 2 2 0 0 2 2 0 0 1 2 0 0 0 0 2 2 2 2 0 0 2 2 4 2 2 2 0 2 0 2 0 2 0 0 1 2 0 0 0 2 0 0 0 2 0 2 0 2 2 0 0 2 2 2 2 2 2 2 0 8 1 2 0 0 2 2 0 0 2 2 2 2 2 0 2 0 2 0 0 0 0 0 0 2 8 8 1 2 0 2 0 2 0 2 0 0 0 0 2 2 2 2 2 0 0 0 0 0 2 6 0 8 1 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 2 0 0 0 0 2 4 6 8 6 1 0 0 0 0 0 0 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 2 2 2 4 ...
References
- R. K. Guy, Unsolved Problems Number Theory, A10.
- H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 192.
- W. Sierpiński, L'induction incomplète dans la théorie des nombres, Scripta Math. 28 (1967), 5-13.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 410.
Links
- T. D. Noe, Table of n, a(n) for n = 0..5049
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math.Tables Aids Comput. 13(1959), 121-122.
- A. M. Odlyzko, Iterated absolute values of differences of consecutive primes, Math. Comp. 61 (1993), 373-380.
- F. Proth, Sur la série des nombres premiers, Nouv. Corresp. Math., 4 (1878) 236-240.
- W. Sierpiński, L'induction incomplète dans la théorie des nombres, Bulletin de la Société des mathématiciens et physiciens de la R.P de Serbie, Vol XIII, 1-2 (1961), Beograd, Yougoslavie.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
- Eric Weisstein's World of Mathematics, Gilbreath's Conjecture
- Index entries for sequences related to Gilbreath conjecture and transform
Crossrefs
Programs
-
Haskell
a036262 n k = delta !! (n - k) !! (k - 1) where delta = iterate (\pds -> zipWith (\x y -> abs (x - y)) (tail pds) pds) a000040_list -- Reinhard Zumkeller, Jan 23 2011
-
Maple
A036262 := proc(n, k) option remember ; if n = 0 then ithprime(k) ; else abs(procname(n-1, k+1)-procname(n-1, k)) ; end if; end proc: seq(seq( A036262(d-k,k),k=1..d),d=1..13) ; # R. J. Mathar, May 10 2023
-
Mathematica
max = 14; triangle = NestList[ Abs[ Differences[#]] &, Prime[ Range[max]], max]; Flatten[ Table[ triangle[[n - k + 1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 04 2011 *)
Formula
T(0,k) = A000040(k). T(n,k) = |T(n-1,k+1) - T(n-1,k)|, n > 0. - R. J. Mathar, Sep 19 2013
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
Definition edited by N. J. A. Sloane, May 03 2023
Comments